Plant Molecular Biology

, Volume 49, Issue 2, pp 161–169 | Cite as

Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana

  • Anna Golovko
  • Folke Sitbon
  • Elisabeth Tillberg
  • Björn Nicander


The tRNA of most organisms contain modified adenines called cytokinins. Situated next to the anticodon, they have been shown to influence translational fidelity and efficiency. The enzyme that synthesizes cytokinins on pre-tRNA, tRNA isopentenyltransferase (EC, has been studied in micro-organisms like Escherichia coli and Saccharomyces cerevisiae, and the corresponding genes have been cloned. We here report the first cloning and functional characterization of a homologous gene from a plant, Arabidopsis thaliana. Expression in S. cerevisiae showed that the gene can complement the anti-suppressor phenotype of a mutant that lacks MOD5, the intrinsic tRNA isopentenyltransferase gene. This was accompanied by the reintroduction of isopentenyladenosine in the tRNA. The Arabidopsis gene is constitutively expressed in seedling tissues.

Arabidopsis thaliana cytokinins tRNA isopentenyltransferase tRNA modification yeast complementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åstot, C., Dolezal, K., Nordström, A., Wang, Q., Kunkel, T., Moritz, T., Chua, N.H. and Sandberg, G. 2000. An alternative cytokinin biosynthesis pathway. Proc. Natl. Acad. Sci. USA 97: 14778–14783.Google Scholar
  2. Björk, G.R. 1995. Biosynthesis and function of modified nucleosides. In: D. Söll and U. RajBhandary (Eds.) tRNA: Structure, Biosynthesis, and Function, ASM Press, Washington, DC, pp. 165–205.Google Scholar
  3. Buck, M., Connick, M. and Ames, B.N. 1983. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal. Biochem. 129: 1–13.Google Scholar
  4. Emery, R.J.N., Leport, L., Barton, J.E., Turner, N.C. and Atkins, C.A 1998. cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol. 117: 1515–1523.Google Scholar
  5. Gehrke, C.W., Kuo, K.C., McCune, R.A. and Gerhardt, K.O. 1982. Quantitative enzymatic hydrolysis of tRNAs. Reversed-phase high performance liquid chromatography of tRNA nucleosides. J. Chromatog. 230: 297–308.Google Scholar
  6. Gietz, R.D. and Schiestl, R.H. 1997. Transforming yeast with DNA. Meth. Mol. Cell. Biol. 5: 255–269.Google Scholar
  7. Gillman, E.C., Slusher, L.B., Martin, N.C. and Hopper, A.K. 1991. MOD5 translation initiation sites determine N-6–isopentenyladenosine modification of mitochondrial and cytoplasmic transfer RNA. Mol. Cell. Biol. 11: 2382–2390.Google Scholar
  8. Golovko, A., Hjälm, G., Sitbon, F., and Nicander, B. 2000. Cloning of a human tRNA isopentenyl transferase. Gene 258: 85–93.Google Scholar
  9. Gray, J., Gelvin, S.B., Meilan, R. and Morris, R.O. 1996. Transfer RNA is the source of extracellular isopentenyladenine in a Tiplasmidless strain of Agrobacterium tumefaciens. Plant Physiol. 110: 431–438.Google Scholar
  10. Kakimoto, T. 2001. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42: 667–685.Google Scholar
  11. Kaminek M., 1982. Mechanisms preventing the interference of tRNA cytokinins in hormonal regulation. In: P.F. Wareing (Ed.) Plant Growth Substances 1982, Academic Press, New York, pp. 215–224.Google Scholar
  12. Laten, H., Gorman, J. and Bock, R.M. 1978. Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. Nucl. Acids Res. 5: 4329–4342.Google Scholar
  13. Letham, D.S. and Palni, L.M.S. 1983. The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. 34: 163–197.Google Scholar
  14. Leung, H.-C.E., Chen, Y. and Winkler, M.E. 1997. Regulation of substrate recognition by the miaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12. J. Biol. Chem. 272: 13073–13083.Google Scholar
  15. Logemann, J., Schell, J. and Willmitzer, L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163: 16–20.Google Scholar
  16. Minet, M., Dufour, M.-E. and Lacroute, F. 1992. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 2: 417–422.Google Scholar
  17. Mok, M.C. 1994. Cytokinins and plant development: an overview. In: D.W.S. Mok and M.C. Mok (Eds.) Cytokinins: Chemistry, Activity, and Function, CRC Press, Boca Raton, FL, pp. 155–166.Google Scholar
  18. Nicander, B., Björkman, P.-O. and Tillberg, E. 1995. Identification of an N-glucoside of cis-zeatin from potato tuber sprouts. Plant Physiol. 109: 513–516.Google Scholar
  19. Persson, B.C. and Björk, G.R. 1993. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2–methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J. Bact. 175: 7776–7785.Google Scholar
  20. Persson, B.C., Esberg, B., Ólafsen, Ò. and Björk, G.R. 1994. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76: 1152–1160.Google Scholar
  21. Prinsen, E., Kaminek, M. and van Onckelen, H.A. 1997. Cytokinin biosynthesis: a black box? Plant Growth Regul. 23: 3–15.Google Scholar
  22. Skoog F. and Armstrong, D.J. 1970. Cytokinins. Annu. Rev. Plant Physiol. 21: 359–384.Google Scholar
  23. Takei, K., Sakakibara, H. and Sugiyama, T. 2001. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276: 26405–26410.Google Scholar
  24. Taller, B.J. 1994. Distribution, biosynthesis, and function of cytokinins in tRNA. In: D.W.S. Mok and M.C. Mok (Eds.) Cytokinins: Chemistry, Activity, and Function, CRC Press, Boca Raton, FL, pp. 101–112.Google Scholar
  25. Thompson, J., Higgins, D. and Gibson, T. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.Google Scholar
  26. Tolerico, L., Benko, A., Aris, J., Stanford, D., Martin, N. and Hopper, A. 1999. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics 151: 57–75.Google Scholar
  27. Urban, C. and Beier, H. 1995. Cysteine tRNAs of plant origin as novel UGA suppressors. Nucl. Acids Res. 23: 4591–4597.Google Scholar
  28. Warner, G.J., Berry, M.J., Moustafa, M.E., Carlson, B.A., Hatfield, D.L. and Faust, J.R. 2000. Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J. Biol. Chem. 275: 28110–28119.Google Scholar
  29. Watanabe, N., Yokota, T. and Takahashi, N. 1982. Transfer RNA, a possible supplier of free cytokinins, ribosyl-cis-zeatin and ribosyl-2–metylthiozeatin: quantitative comparison between free and transfer cytokinins in various tissues of the hop plant. Plant Cell Physiol. 23: 479–488.Google Scholar
  30. Winkler, M.E. 1998. Genetics and regulation of base modification in the tRNA and rRNA of procaryotes and eucaryotes. In: H. Grosjean and R. Benne (Eds.) Modification and Editing of RNA, ASM Press, Washington, D.C., pp. 441–469.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Anna Golovko
    • 1
  • Folke Sitbon
    • 1
  • Elisabeth Tillberg
    • 1
  • Björn Nicander
    • 1
  1. 1.Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations