Plant and Soil

, Volume 218, Issue 1–2, pp 257–272 | Cite as

The fate of nitrogen from winter-frozen rapeseed leaves: mineralization, fluxes to the environment and uptake by rapeseed crop in spring

  • Jean-François Dejoux
  • Sylvie Recous
  • Jean-Marc Meynard
  • Isabelle Trinsoutrot
  • Philippe Leterme


For environmental purposes, very early sowing of winter rapeseed may reduce winter nitrate leaching thanks to the high N uptake capacities of rapeseed in autumn. However, freezing could lead to high losses of leaf nitrogen, amounting to more than 100 kg N ha-1 (Dejoux et al., 1999). Here we investigated the agronomic and environmental consequences of the decomposition of fallen leaves, based on field and laboratory studies with 15N labeled leaves (C:N=9). The potential kinetics of decomposition of leaves were measured by incubation in the laboratory. In the field, all leaves were removed at beginning of winter and replaced by labeled leaves, artificially frozen at −15°C , which were laid on the soil surface. Compared on a thermal time basis, decomposition proceeded as quickly in the field as in the incubations and was complete after 116 normalized days at 15 °C. The proportion of 15N derived from labeled leaves, absorbed again by the rape plants, was 28% at flowering and 24% at harvest. This high N recovery is assumed to result from the synchronization of leaves decomposition and active N absorption by rape in spring. Leaf N mineralization did not increase soil N mineral content at flowering or at harvest, but we observed a 40% loss of 15N. As no leaching was simulated, this loss was supposed to be gaseous. Such a high percentage could be explained by the fact that the decomposing leaves lay on the soil surface, and by climatic conditions conducive to such emissions. For environmental purposes, the quantity and nature of these gaseous N emissions have to be studied for other climatic conditions and types of leaves. As a proportion of N is reabsorbed, N fertilizer application rates could be reduced accordingly.

biochemical quality Brassica napus L. decomposition incubation leaf fall N recovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aita C, Recous S and Angers D 1997 Short term kinetics of residual wheat straw C and N under field conditions: characterisation by 15N13C tracing and soil particle size fractionation. Eur. J. Soil Sci. 48, 283–294.CrossRefGoogle Scholar
  2. Angers D and Recous S 1997 Decomposition of wheat straw and rye in soil as affected by particle size. Plant Soil 189, 197–203.CrossRefGoogle Scholar
  3. Aulakh M S and Pasricha N S 1998 The effect of green manuring and fertilizer N application on enhancing crop productivity in mustard-rice rotation in semi-arid subtropical regions. Eur. J. Agron. 8, 51–58.CrossRefGoogle Scholar
  4. Barcelona M J 1984 TOc determinations in ground water. Ground water 22, 8–24.CrossRefGoogle Scholar
  5. Berger G, Schmaler K and Richter K 1996 Effects of catch-crops on the dynamics of mineral nitrogen in the soil in winter and on the nitrogen conservation under special conditions of sandy soils. Arch. Agron. Soil Sci. 40, 217–229.CrossRefGoogle Scholar
  6. Breland T A 1994 Enhanced mineralization and denitrification as a result of heterogeneous distribution of clover residues in soil. Plant Soil 166, 1–12.CrossRefGoogle Scholar
  7. Bremer E, Van Houtum W and Van Kessel C 1991 Carbon dioxide evolution from wheat and lentil residues as affected by grinding, added nitrogen and the absence of soil. Biol. Fertil. Soils 11, 221–227.CrossRefGoogle Scholar
  8. Cellier P, Germon J C, Hénault C and Génermont S 1997 Les émissions d'ammoniac et d'oxydes d'azote (NOx et N2O) par les sols cultivés: mécanismes de production et quantification des flux. In Maîtrise de l'azote dans les Agrosystèmes. Eds G. Lemaire and B. Nicolardot. pp 25–37. INRA, Reims, France, 19-20/11/96.Google Scholar
  9. Chapot J Y 1995 Labelled nitrogen recovery from an intermediate cover crop study on lysimeters during 7 years. C.R. Acad. Agric. Fr. 81, 145–162.Google Scholar
  10. Clément A, Ladha J K and Chalifour F P 1998 Nitrogen dynamics of various green manure species and the relationship to lowland production. Agron. J. 90, 149–154.CrossRefGoogle Scholar
  11. Colnenne C, Meynard J M, Reau R, Justes E and Merrien A 1998 Determination of a critical nitrogen dilution curve for winter oilseed rape. Ann. Bot. 81, 311–317.CrossRefGoogle Scholar
  12. Corre N 1997 Etude du devenir de l'azote fourni au sol par différents résidus de légumineuses marqués à l'azote 15, lors de la culture suivante (colza ou blé). Thèse de doctorat, Université de Caen, 117 p. + annexes.Google Scholar
  13. Dejoux J F 1999 Evaluation d'itinéraires techniques du colza d'hiver en semis très précoces. Analyse agronomique, conséquences environnementales et économiques. Thèse de doctorat, INA-PG, Paris, 244 p. + annexes.Google Scholar
  14. Dejoux J F, Meynard J M and Reau R 1999 Rapeseed new crop management with very early sowing in order to reduce Nleaching and N-fertilization. In New Horizons for an Old Crop. Proc. of the 10th Inter. Rapeseed Congress, GCIRC: CD-RON, Canberra-Australia, 26-29/09/99.Google Scholar
  15. Denys D, Mariotti A, Muller J C, Grably M, Mary B and Nicolardot B 1995 Utilisation conjointe de la lysimétrie et des techniques de marquage isotopique pour étudier le bilan de l'azote des sols cultivés. C.R. Acad. Agric. Fr. 81, 131–144.Google Scholar
  16. Dorich R A and Nelson D W 1984 Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soil. Soil Sci. Plant Nutr. 31, 349–359.Google Scholar
  17. Gabrielle B, Denoroy P, Gosse G, Justes E and Andersen M N 1998 Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Res. 57, 95–111.CrossRefGoogle Scholar
  18. Genermont S 1996 Modélisation de la volatilisation d'ammoniac après épandage de lisier sur parcelle agricole. Thèse de doctorat, INP, Toulouse, 328 p. + annexes.Google Scholar
  19. Hénault C, Devis X, Lucas J L and Germon J C 1998 Influence of different agricultural pratices (Type of crop - form of Nfertilizer) on soil nitrous oxide emissions. Biol. Fertil. Soils 27, 299–306.CrossRefGoogle Scholar
  20. Janzen H H and Radder G D 1989 Nitrogen mineralization in a green manure-amended soil as influenced by cropping history and subsequent crop. Plant Soil 120, 125–131.CrossRefGoogle Scholar
  21. Janzen H H and Schaalje G B 1992 Barley response to nitrogen and non-nutritional benefits of legume green manure. Plant Soil 142, 19–3.Google Scholar
  22. Jenkinson D S, Fox R H and Rayner J H 1985 Interactions between fertilizer nitrogen and soil nitrogen: the so-called ‘priming effect’. J. Soil Sci. 36, 425–444.CrossRefGoogle Scholar
  23. Jensen E S 1994a Availability of nitrogen in 15N-labelled mature pea residues to subsequent crops in the field. Soil Biol. Biochem. 26, 465–472.CrossRefGoogle Scholar
  24. Jensen E S 1994b Leaching in small lysimeters of nitrate derived from nitrogen-15N-labeled field pea residues. J. Envir. Qual. 23, 1045–1050.CrossRefGoogle Scholar
  25. Jensen E S 1994c Mineralization - immobilisation of N in soil amended with low C:N ratio plant residues with different particles sizes. Soil Biol. Biochem. 26, 519–521.CrossRefGoogle Scholar
  26. Jensen E S 1996 Nitrogen acquisition by pea and barley and the effect of their crop residues on available nitrogen for subsequent crops. Biol. Fertil. Soils 23, 459–464.Google Scholar
  27. Jensen E S and Ambus P 1998 Plant litter particle size: effects on decomposition and nitrogen dynamics. In Actes du 16eme Congrès Mondial de Science du Sol: CD-RON, Montpellier.Google Scholar
  28. Justes E, Mary B and Nicolardot B 1999 Comparing the effectiveness of radish cover crop, oilseed rape volunteers and oilseed rape residues incorporation for reducing nitrate leaching. Nutrient Cycling in Agroecosystems, (In press).Google Scholar
  29. Ladd J N, Amato M, Jackson R B and Butler J H A 1983 Utilization by wheat crops of nitrogen from legume residues decomposing in soils in the field. Soil Biol. Biochem. 15, 231–238.CrossRefGoogle Scholar
  30. Ladd J N, Oades J M and Amato M 1981 Distribution and recovery of nitrogen from legume residues decomposing in soils sown to wheat in the field. Soil Biol. Biochem. 13, 251–256.CrossRefGoogle Scholar
  31. Laurent F, Machet J M, Pellot P and Trochard R 1995 Cultures intermédiaires piège à nitrates. Comparaison des espèces. Perspect. agric. 206, 38–49.Google Scholar
  32. Machet JM, Pierre D, Recous S and Rémy J C 1987 Signification du coefficient réel d'utilisation et conséquences pour la fertilisation azotée des cultures. C.R. Acad. Agric. Fr. 73, 39–55.Google Scholar
  33. Makowski N 1991 ZurWirkung geteilter Stickstoffgaben auf Ertrag und Inhaltsstoffe des Winterrapses. In Rapeseed in a Changing World, Proc. of the 8th Inter. Rapeseed Congress, Ed. D I Mc-Gregor. pp 573–577. GCIRC, Saskatoon, Canada, 9-11/07/91.Google Scholar
  34. Mary B 1987 Effets du précédent cultural sur la disponibilité du sol en azote minéral. C.R. Acad. Agric. Fr. 73, 57–69.Google Scholar
  35. Mattsson M, Husted S and Schjoerring JK 1998 Influence of nitrogen nutrition and metabolism on ammonia volatilization in plants. Nutr. Cycl. Agroecosyst. 51, 35–40.CrossRefGoogle Scholar
  36. Meynard J M, Askew M F, Bockey D, Ceccon P, Christen O, Debaeke P, Dejoux J F, Evans E, Falisse A, Gonzalez P, Haldrup C, Nilsson B and Reau R 1998 Eléments de réflexion sur les priorités de recherche concernant les systèmes de culture dans l'Union européenne. OCL 5, 82–85.Google Scholar
  37. Müller M M and Sundman V 1988 The fate of (15N) released from different plant materials during decomposition under field conditions. Plant Soil 105, 133–139.CrossRefGoogle Scholar
  38. Myers R J K, Palm C A, Cuevas E, Gunatilleke I U N and Brossard M 1994 The synchronisation of nutrient mineralization and plant nutrient demand. In The Biological Management of Tropical Soil Fertility. Eds P L Woomer and MJ Swift. pp 81–116. JohnWiley and Sons, Chichester.Google Scholar
  39. Nicolardot B, Denys D, Lagaracherie B, Cheneby D and Mariotti A 1995 Decomposition of 15N-labelled catch-crop residues in oil: evaluation of N mineralization and plant-N uptake potentials under controlled conditions. Eur. J. Soil Sci. 46, 115–123.CrossRefGoogle Scholar
  40. Recous S and Machet JM1999 Short-term immobilisation and crop uptake of fertiliser-N applied to winter wheat: effect of date of application in spring. Plant Soil, 206, 137–149.CrossRefGoogle Scholar
  41. Recous S, Richard G, Fruit L, Chenu C and Angers D A 1998 Factors affecting the contact between soil and incorporated crop residues: short-term effects on C evolution. In 16th Congrès Mondial de Science du Sol, Ed. AFES. pp 753. Montpellier, France, 20-26/08/1998.Google Scholar
  42. Recous S, Robin D, Darwis D and Mary B 1995 Soil inorganic N availibity: effect on maize residue decomposition. Soil Biol. Biochem. 27, 1529–1538.CrossRefGoogle Scholar
  43. Rees RM, Yan L and Ferguson M 1993 The release and plant uptake of nitrogen from some plant and animal manures. Biol. Fertil. Soils 15, 185–193.CrossRefGoogle Scholar
  44. SAS Institute 1987 SAS/STAT Guide for personal Computers, Version 6 Edition. Cary, NC: SAS Institute Inc.Google Scholar
  45. Saviozzi A, Scagnozzi A, Riffaldi R and Levi Minzi R 1995 Decomposition of crop residues under laboratory conditions. Soil Use Manage. 11, 193–198.Google Scholar
  46. Seneratne R and Hardarson G 1988 Estimation of residual N effect of faba bean and pea on two succeeding cereals using 15N methodology. Plant Soil 110, 81–89.CrossRefGoogle Scholar
  47. Sorensen P, Ladd J N and Amato M 1996 Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil. Soil Biol. Biochem. 28, 1425–1434.CrossRefGoogle Scholar
  48. Stott D E, Elliott L F, Papendick R I and Campbell G S 1986 Low temperature or low water potential effects on the microbial decomposition of wheat residu. Soil Biol. Biochem. 18, 577–582.CrossRefGoogle Scholar
  49. Thomsen I K and Christensen B T 1996 Availability to subsequent crops and leaching of nitrogen in 15N-labelled sugarbeet tops and oilseed rape residues. J. Agric. Sci. Camb. 126, 191–199.CrossRefGoogle Scholar
  50. Thomsen I K, Schjonning P, Jensen B, Kristensen, K and Christensen B T 1999 Turnover of organic matter in differently textured soils. II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218.CrossRefGoogle Scholar
  51. Thorup-Kristensen K 1994 An easy pot incubation method for measuring nitrogen mineralization from easily decomposable organic material under well defined conditions. Fert. Res. 38, 239–247.CrossRefGoogle Scholar
  52. Trinsoutrot I 1999 Influence de la qualité biochimique et de la teneur en azote de résidus de colza (Brassica napus L.) sur les biotransformations du carbone et de l'azote au cours de leur décomposition dans le sol. Thèse de Doctorat, Univ. Claube Bernard Lyon I, 137 p. + annexes.Google Scholar
  53. Van Soest P J 1963 Use of detergent in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the association of Official Agricultural Chemists 46, 825–835.Google Scholar
  54. Vanlauwe B, Sanginga N and Merckx R 1998 Recovery of Leucaena and Dactyladenia Residue Nitrogen-15 in Alley Cropping Systems. Soil Sci. Soc. Am. J. 62, 454–460.CrossRefGoogle Scholar
  55. Watkins N and Barraclough D 1996 Gross rates of N mineralization associated with the decomposition of plant residues. Soil Biol. Biochem. 28, 169–175.CrossRefGoogle Scholar
  56. Whitmore A P and Groot J J R 1997 The decomposition of sugar beet residues: mineralization versus immobilization in contrasting soil types. Plant Soil 192, 237–247.CrossRefGoogle Scholar
  57. Yaacob O and Blair G J 1980 The growth and nitrogen uptake of Rhodes grass grown on soils with varying histories of legume cropping. Plant Soil 57, 249–255.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jean-François Dejoux
    • 1
  • Sylvie Recous
    • 2
  • Jean-Marc Meynard
    • 1
  • Isabelle Trinsoutrot
    • 3
  • Philippe Leterme
    • 4
  1. 1.Unité d'Agronomie INRA-INAPGThiverval-GrignonFrance
  2. 2.Unité d'agronomie, INRALaonFrance
  3. 3.Unité d'Agronomie INRACentre de Recherche AgronomiqueReims cedex 2France
  4. 4.Unité de recherche Sol-Agronomie INRARennes CedexFrance

Personalised recommendations