Journal of Atmospheric Chemistry

, Volume 41, Issue 3, pp 297–314 | Cite as

Determination of Dominant Pathways in Chemical Reaction Systems: An Algorithm and Its Application to Stratospheric Chemistry

  • Ralph Lehmann
Article

Abstract

The analysis of complex chemical reaction systems is frequently complicatedbecause of the coexistence of fast cyclic reaction sequences and slower pathways that yield a net production or destruction of a certain species of interest.An algorithm for the determination of both these types of reaction sequences (in a given reaction system) is presented. Under the assumption that reaction rates are known, it finds the mostimportant pathways by solving a linear optimization problem for each of them.This algorithm may be used as a tool for the interpretation of chemical model runs.For illustration, it is applied to examples in stratospheric chemistry, including the determination of catalytic ozone destruction cycles.

chemical pathway analysis reaction sequences catalytic ozone destruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. G., Brune, W. H., Lloyd, S. A., Toohey, D. W., Sander, S. P., Starr, W. L., Loewenstein, M., and Podolske, J. R., 1989: Kinetics of O3 destruction by ClO and BrO within the Antarctic vortex. An analysis based on in situ ER-2 data, J. Geophys. Res. 94, 11480–11520.Google Scholar
  2. Bates, D. R. and Nicolet, M., 1950: The photochemistry of atmospheric water vapor, J. Geophys. Res. 55, 301–327.Google Scholar
  3. Brasseur, G. P., Tie, X. X., Rasch, P. J., and Lefèvre, F., 1997: A three-dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere, J. Geophys. Res. 102, 8909–8930.Google Scholar
  4. Carslaw, K. S., Luo, B., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett. 22, 1877–1880.Google Scholar
  5. Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R., and Lary, D. J., 1993: A threedimensional modelling study of trace species in the Arctic lower stratosphere during winter 1989-90, J. Geophys. Res. 98, 7199–7218.Google Scholar
  6. Cicerone, R. J., 1987: Changes in stratospheric ozone, Science 237, 35–42.Google Scholar
  7. Clarke, B. L., 1988: Stoichiometric network analysis, Cell Biophys. 12, 237–253.Google Scholar
  8. Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content, Q. J. R. Meteorol. Soc. 96, 320–325.Google Scholar
  9. Happel, J. and Sellers, P. H., 1982: Multiple reaction mechanisms in catalysis, Ind. Eng. Chem. Fundam. 21, 67–76.Google Scholar
  10. Johnson, B. G. and Corio, P. L., 1993: Computer construction of reaction mechnisms, J. Phys. Chem. 97, 12100–12105.Google Scholar
  11. Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen catalysts from supersonic transport exhaust, Science 173, 517–522.Google Scholar
  12. Johnston, H. and Kinnison, D., 1998: Methane photooxidation in the atmosphere: Contrast between two methods of analysis, J. Geophys. Res. 103, 21967–21984.Google Scholar
  13. Jucks, K. W., Johnson, D. G., Chance, K. V., Traub, W. A., Salawitch, R. J., and Stachnik, R. A., 1996: Ozone production and loss rate measurements in the middle stratosphere, J. Geophys. Res. 101, 28785–28792.Google Scholar
  14. Lary, D. J., 1997: Catalytic destruction of atmospheric ozone, J. Geophys. Res. 102, 21515–21526.Google Scholar
  15. Mavrovouniotis, M. L., 1992: Synthesis of reaction mechanisms consisting of reversible and irreversible steps. 2. Formalization and analysis of the synthesis algorithm, Ind. Eng. Chem. Res. 31, 1637–1653.Google Scholar
  16. Mavrovouniotis, M. L., Stephanopoulos, G., and Stephanopoulos, G., 1990: Computer-aided synthesis of biochemical pathways, Biotechnol. Bioeng. 36, 1119–1132.Google Scholar
  17. Milner, P. C., 1964: The possible mechanisms of complex reactions involving consecutive steps, J. Electrochem. Soc. 111, 228–232.Google Scholar
  18. Molina, M. J. and Rowland, F. S., 1974: Stratospheric sink for chlorofluoromethans: Chlorine atom catalyzed destruction of ozone, Nature 249, 810–814.Google Scholar
  19. Nevison, C. D., Solomon, S., and Gao, R. S., 1999: Buffering interactions in the modeled response of stratospheric O3 to increased NOx and Hox, J. Geophys. Res. 104, 3741–3754.Google Scholar
  20. Ross, M. N., Benbrook, J. R., Sheldon, W. R., Zittel, P. F., and McKenzie, D. L., 1997: Observations of stratospheric ozone depletion in rocket exhaust plumes, Nature 390, 62–64.Google Scholar
  21. Schuster, R. and Schuster, S., 1993: Refined algorithm and computer program for calculating all nonnegative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed, Comp. Appl. Biosci. 9, 79–85.Google Scholar
  22. Schuster, S., Danekar, T., and Fell, D. A., 1999: Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering, Trends Biotechnol. 17, 53–60.Google Scholar
  23. Schuster, S. and Hilgetag, C., 1994: On elementary flux modes in biochemical reaction systems at steady state, J. Biological Systems 2, 165–182.Google Scholar
  24. Seressiotis, A. and Bailey, J. E., 1988: MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways, Biotechnol. Bioeng. 31, 587–602.Google Scholar
  25. Stolarski, R. S. and Cicerone, R. J., 1974: Stratospheric chlorine: a possible sink for ozone, Can. J. Chem. 52, 1610–1615.Google Scholar
  26. Toumi, R., Jones, R. L., and Pyle, J. A., 1993: Stratospheric ozone depletion by ClONO2 photolysis, Nature 365, 37–39.Google Scholar
  27. von Hohenbalken, B., Clarke, B. L., and Lewis, J. E., 1987: Least distance methods for the frame of homogeneous equation systems, J. Comp. Appl. Math. 19, 231–241.Google Scholar
  28. Wennberg, P. O., Cohen, R. C., Stimpfle, R. M., Koplow, J. P., Anderson, J. G., Salawitch, R. J., Fahey, D. W., Woodbridge, E. L., Keim, E. R., Gao, R. S., Webster, C. R., May, R. D., Toohey, D.W., Avallone, L.M., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Chan, K. R., and Wofsy, S. C., 1994: Removal of stratospheric O3 by radicals: In situ measurements of OH, HO2, NO, ClO, and BrO, Science 266, 398–404.Google Scholar
  29. Wofsy, S. C., McElroy, M. B., and Yung, Y. L., 1975: The chemistry of atmospheric bromine, Geophys. Res. Lett. 2, 215–218.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ralph Lehmann
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchPotsdamF.R. Germany

Personalised recommendations