, Volume 123, Issue 2, pp 165–177 | Cite as

Proteinase inhibitor polymorphism in the genus Vigna subgenus Ceratotropis and its biosystematic implications

  • Alexander V. Konarev
  • Norihiko Tomooka
  • Duncan A. Vaughan


The diversity of components for fourproteinase inhibitors found in species ofthe genus Vigna subgenus Ceratotropis are described. Trypsin,chymotrypsin, subtilisin and cysteineproteinase inhibitors were analyzedby isoelectric focusing followed by thegelatin replica method. Of these proteinaseinhibitors, trypsin inhibitors showedmost polymorphism both within and betweenspecies. Many trypsin inhibitor componentswere also active to chymotrypsin. Severalaccessions had very low levels or absenceof some inhibitors, such as very low levelsof trypsin inhibitor in two accessions ofthe V. tenuicaulis and absence ofchymotrypsin inhibitors in V.grandiflora and V. subramaniana.Proteinase inhibitor polymorphism broadlyagreed with the taxonomic system for thesubgenus Ceratotropis. Based oninhibitor variation species analyzed couldbe divided into three groups whichcorresponding to sections Aconitifoliae, Angulares and Ceratotropis. Some species have verylittle variation in trypsin inhibitorsdespite wide distribution, such as, V.radiata and V. reflexo-pilosa.Accessions of other species showedconsiderable intraspecific variation fortrypsin inhibitors, such as, V.grandiflora, V. aconitifolia andV. stipulacea. Proteinase inhibitorpolymorphism provides an indication of thespecies that may have contributed a genometo the tetraploid species, V. reflexo-pilosa.

Leguminosae proteinase inhibitors taxonomy Vigna 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgartner, B. & M.J. Chrispeels, 1977. Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem 77: 223–233.Google Scholar
  2. Doi, K., A. Kaga, N. Tomooka & D.A. Vaughan, 2002. Molecular phylogeny of genus Vigna subgenus Ceratotropis based on rDNA ITS and atpB-rbcL intergenic spacer of cpDNA sequences. Genetica (accepted).Google Scholar
  3. Egawa, Y., I.B. Bujang, S. Chotechuen, N. Tomooka & Y. Tateishi, 1996a. Phylogenetic differentiation of tetraploid Vigna species, V. glabrescens and V. reflexo-pilosa. JIRCAS J 3: 49–58.Google Scholar
  4. Egawa, Y., S. Chotechuen, N. Tomooka, C. Lairungreang, P. Nakeeraks, C. Thavarasook & C. Kitbamroong, 1996b. Collaborative research program on mungbean germplasm (subgenus Ceratotropis of the genus Vigna) between DOA, Thailand and JIRCAS. In: P. Srinives, C. Kitbamroong & S. Miyazaki (Eds.), Mungbean Germplasm: Collection, Evaluation and Utilization for Breeding Program, pp. 1–8. Japan International Research Center for Agricultural Sciences, Tsukuba, Japan.Google Scholar
  5. Fatokun, C.A., D. Danesh, N.D. Young & E.L. Stewart, 1993. Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86: 97–104.Google Scholar
  6. Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package) Version 3.5c.Google Scholar
  7. Fujii, K. & S. Miyazaki, 1987. Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis and its relationship with cytogenetic classification. Appl Ent Zool 22: 229–230.Google Scholar
  8. Hymowitz, T., 1980. Chemical germplasm investigations in soybeans: The flotsam hypothesis. In: Recent Advances in Phytochemistry 14.Google Scholar
  9. Ishikawa, C., K. Watanabe, N. Sakata, C. Nakagaki, S. Nakamura & K. Takahashi, 1985. Azuki bean (Vigna angularis) protease inhibitors: isolation and amino acid sequences. J Biochem 97: 55–70.Google Scholar
  10. Jaaska, V. & V. Jaaska, 1990. Isozyme variation in Asian beans. Bot Acta 103: 223–322.Google Scholar
  11. Kaga, A., N. Tomooka, Y. Egawa, K. Hosaka & O. Kajima, 1996. Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88: 17–24.Google Scholar
  12. Kiyohara, T., K. Yokota, Y. Masaki, O. Matsui, N. Iwasaki & M. Yoshikawa, 1981. The amino acid sequences of proteinase inhibitors I-A and I-A from adzuki bean. J Biochem 90: 721–728.Google Scholar
  13. Kollipara, K.P. & T. Hymowitz, 1992. Characterization of trypsin and chymotrypsin inhibitors in the wild perennial Glycine species. J Agric Food Chem 40: 2356–2363.Google Scholar
  14. Konarev, Al. V., 1986. Analysis of protease inhibitors from wheat grain by gelatine replicas method. Biokhimiya 51: 195–201 (Biokhimiya is translated in English by Plenum publishing Corp.).Google Scholar
  15. Konarev, Al. V., 1987. Variability of trypsin-like proteinase inhibitors in wheat and related cereals in connection with resistance to grain pests. Selkochozajstvennaya Biologia 5: 17–24.Google Scholar
  16. Konarev, Al. V., 1994. Variability of hydrolase inhibitors and the problems of evolution, immunity and breeding of cereals. In: V.G. Konarev (Ed.), Molecular Biological Aspects of Applied Botany, Genetics and Plant Breeding, pp. 83–94. (Supplement to Theoretical basis of plant breeding, vol. 1). Saint Petersburg: VIR.Google Scholar
  17. Lawn, R.J., 1995. The Asiatic Vigna species. In: J. Smartt & N.W. Simmonds (Eds.), Evolution of Crop Plants, pp. 321–326. Longman, Harlow, U.K.Google Scholar
  18. Maréchal, R., J.M. Mascharpa & F. Stainier, 1978. Etude taxonomique d'un groupe complexe d'espéces des genres Phaselolus et Vigna (Papilionaceae) sur la base de données morphologiques, traitées par l'analysis informatique. Boissiera 28.Google Scholar
  19. Miyazaki, S., J. Kawakami & N. Ishikura, 1984. Phylogenetic relationship and classification of Vigna radiata-mungo complex. JARQ 17(4): 225–229.Google Scholar
  20. Nei, M. & W.H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273.Google Scholar
  21. Niyomdham, C., 1992. Notes on Thai and Indo-Chinese Phaseolae (Leguminosae-Papilionoideae). Nordic J Bot 12: 339–346.Google Scholar
  22. Norioka, N., S. Hara, T. Ikenaka & J. Abe, 1988. Distribution of the Kunitz and the Bowman–Birk family of proteinase inhibitors in leguminous seeds. Agric Biol Chem (Japan) 52: 1245–1252.Google Scholar
  23. Nozawa, H., H. Yamagata, Y. Aizono, M. Yoshikawa & T. Iwasaki, 1989. The complete amino acid sequence of a subtilisin inhibitor from adzuki beans (Vigna angularis). J Biochem (Tokyo) 106: 1003–1008.Google Scholar
  24. Tateishi, Y., 1996. Systematics of the species of Vigna subgenus Ceratotropis. In: P. Srinives, C. Kitbamroong & S. Miyazaki (Eds.), Mungbean Germplasm: Collection, Evaluation and Utilization for Breeding Program, pp. 9–24. JIRCAS.Google Scholar
  25. Tateishi, Y. & N. Maxted, 2002. New species and combinations in Vigna subgenus Ceratotropis (Piper) Verdcourt (Leguminosae, Phaseoleae). Kew Bulletin (accepted).Google Scholar
  26. Tomooka, N., C. Lairungreang, P. Nakeeraks, Y. Egawa & C. Thavarasook, 1992. Development of bruchid resistant mungbean line using wild germplasm in Thailand. Plant Breed 109: 60–66.Google Scholar
  27. Tomooka, N. & Y. Egawa, 1996. Crossablity among cultivated and wild azuki bean related species in the genus Vigna. Breed Sci 40(extra issue 1): 65–66 (in Japanese).Google Scholar
  28. Tomooka, N., C. Lairungreang & Y. Egawa, 1996. Taxonomic position of wild Vigna species collected in Thailand based on RAPD analysis. In: P. Srinives, C. Kitbamroong & S. Miyazaki (Eds.), Mungbean Germplasm: Collection, Evaluation and Utilization for Breeding Program, pp. 31–40. JIRCAS.Google Scholar
  29. Tomooka, N., Y. Egawa & A. Kaga, 2000a. Biosystematics and genetic resources of the genus Vigna subgenus Ceratotropis. In: Proc 7th MAFF Int workshop on genetic resources, pp. 37–62. NIAR, Tsukuba, Japan.Google Scholar
  30. Tomooka, N., K. Kashiwaba, D.A. Vaughan, M. Ishimoto & Y. Egawa, 2000b. The effectiveness of evaluation wild species; searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica 115: 27–41.Google Scholar
  31. Tomooka, N. & N. Maxted, 2002a. Two new species, sectional designations and new combinations in Vigna subgenus Ceratotropis (Piper) Verdcourt (Leguminosae, Phaseoleae). Kew Bulletin (accepted).Google Scholar
  32. Tomooka, N., M.S. Yoon, K. Doi, A. Kaga & D.A. Vaughan, 2002b. AFLP analysis of diploid species in Vigna subgenus Ceratotropis. Genet Res Crop Evol (accepted).Google Scholar
  33. Tomooka, N., D.A. Vaughan, H. Moss & N. Maxted, 2002c. The Asian Vigna: Genus Vigna subgenus Ceratotropis genetic resources. Kluwer Academic Publishers (in preparation).Google Scholar
  34. Vaillancourt, R.E. & N.F. Weeden, 1993. Chloroplast DNA phylogeny on old world Vigna (Leguminosae). Systematic Botany 18(4): 642–651.Google Scholar
  35. Wilson, K.A. & J.C. Chen, 1983. Amino acid sequence of mungbean trypsin inhibitor and its modified forms appearing during germination. Plant Physiol 71: 341–349.Google Scholar
  36. Yasui, T., Y. Tateishi & H. Ohashi, 1985. Distribution of low molecular weight carbohydrates in the subgenus Ceratotropis of the genus Vigna (Leguminosae). Bot Mag Tokyo 98: 75–87.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alexander V. Konarev
    • 1
  • Norihiko Tomooka
    • 2
  • Duncan A. Vaughan
    • 2
  1. 1.All Russian Institute for Plant ProtectionSt. PetersburgRussia
  2. 2.Crop Evolutionary Dynamics LaboratoryNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations