Plant Molecular Biology

, Volume 48, Issue 5–6, pp 453–461

Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population

  • Michael Lee
  • Natalya Sharopova
  • William D. Beavis
  • David Grant
  • Maria Katt
  • Deborah Blair
  • Arnel Hallauer
Article
  • 972 Downloads

Abstract

The effects of intermating on recombination and the development of linkage maps were assessed in maize. Progeny derived from a common population (B73 × Mo17) before and after five generations of intermating were genotyped at the same set of 190 RFLP loci. Intermating resulted in nearly a four-fold increase in the genetic map distance and increased the potential for improved genetic resolution in 91% of the intervals evaluated. This mapping population and related information should connect research involving dense genetic maps, physical mapping, gene isolation, comparative genomics, analysis of quantitative trait loci and investigations of heterosis.

genomics genetic mapping intermated population recombination Zea mays L. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beavis, W.D., Lee, M., Grant, D., Hallauer, A.R., Owens, T., Katt, M. and Blair, D. 1992. The influence of random mating on recombination among RFLP loci. Maize Genet. Coop. Newsl. 66: 52-53.Google Scholar
  2. Burr, B. and Burr, F.A. 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical consideration. Trends Genet. 7: 55-60.Google Scholar
  3. Casa, A.M., Brouwer, C., Nagel, A., Wang, L., Kresovich, S. and Wessler, S.R. 2000. The MITE heartbreaker (Hbr): molecular markers in maize. Proc. Natl. Acad. Sci USA 97: 10083-10089.Google Scholar
  4. Civardi, L., Xia, Yiji, Edwards, K.J., Schnable, P.S., and Nikolau, B.J. 1994. The relationship between genetic and physical distances in the cloned al-sh2 interval of the Zea mays L. genome. Proc. Natl. Acad. Sci., USA 91: 8268-8272.Google Scholar
  5. Covarrubias-Prieto, J., Hallauer, A.R. and Lamkey, K.R. 1989. Intermating F2 populations of maize. Genetika 21: 111-126.Google Scholar
  6. Davis, G.L., McMullen, M.D., Baysdorfer, C., Musket, T. Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S. and Coe, E.H. Jr. 1999. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152: 1137-1172.Google Scholar
  7. Gardiner, J.M., Coe, E.H., Melia-Hancock, S., Hoisington, D.A. and Chao, S. 1993. Development of a core RFLP map using an immortalized F2 population of maize. Genetics 134: 917-930.Google Scholar
  8. Gill, K.S., Gill, B.S., Endo, T.R. and Boyko, E.V. 1996. Identification and high-density mapping of gene-rich region in chromosome group 5 of wheat. Genetics 143: 1001-1012.Google Scholar
  9. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, I. 1987. MAPMAKER: an interactive computer package for constructing linkage maps of experimental and natural populations. Genomics 1: 174-181.Google Scholar
  10. Liu, S.-C., Kowalsky, S.P., Lan, T.-H., Feldmann, K.A. and Paterson, A.H. 1996. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142: 247-258.Google Scholar
  11. Ott, J. 1991. Analysis of Human Genetic Linkage. Johns Hopkins University Press, Baltimore, MD.Google Scholar
  12. Senior, M.L., Chin, E.C.L., Lee, M., Smith, J.S.C. and Stuber, C.W. 1996. Simple sequence repeat markers developed from maize sequences found in the GenBank database: map construction. Crop Sci. 36: 1676-1683.Google Scholar
  13. Stuber, C.W., Lincoln, S.E., Wolff, S.W., Helentjaris, T. and Lander, E. S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839.Google Scholar
  14. Veldboom, L.R., Lee, M. and Woodman, W.L. 1994. Molecular marker-facilitated studies in an elite maize population. I. Linkage analysis and determination of QTL for morphological traits. Theor. Appl. Genet. 88: 7-16.Google Scholar
  15. Wilson, W.A., Harrington, S.E., Woodman, W.L., Lee, M., Sorrells, M.E. and McCouch, S. R. 1999. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153: 453-473.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michael Lee
    • 1
  • Natalya Sharopova
    • 1
    • 3
  • William D. Beavis
    • 2
    • 4
  • David Grant
    • 2
    • 5
  • Maria Katt
    • 2
  • Deborah Blair
    • 2
  • Arnel Hallauer
    • 1
  1. 1.Department of AgronomyIowa State UniversityAmesUSA
  2. 2.Pioneer Hi-Bred Intl.JohnstonUSA
  3. 3.Curtis HallUniversity of MissouriColumbiaUSA
  4. 4.National Center for Genome ResourcesSanta Fe
  5. 5.USDA-ARS, Department of AgronomyIowa State UniversityAmesUSA

Personalised recommendations