Journal of Radioanalytical and Nuclear Chemistry

, Volume 251, Issue 2, pp 299–301 | Cite as

Boiling points of the superheavy elements 117 and 118

  • N. Takahashi


It has been shown that the relativistic effect on the electrons reveal in the heavy element region.1–3 What kind of changes will appear in the heavy elements because of the relativistic effects? Can we observe the changes? We observed that the boiling points of astatine and radon are lower than that extrapolated values from lighter elements in the same groups.4,5 We examined the systematic behavior of the elements on the boiling point and have found a new method for the estimation of the boiling points of the superheavy elements in the halogen and rare gases. The estimated values of the elements 117 and 118 are 618 and 247 K, respectively which are considerably lower than those6 obtained until now. If these values are correct the production of the superheavy elements with heavy ions reaction may be affected. Further, the chemical properties may be fairly different from the lighter elements.


Physical Chemistry Inorganic Chemistry Boiling Chemical Property Radon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. FRICKE, in: Structure and Bonding, J. P. DUNTIZ et al. (Eds), Springer Verlag, Berlin, 21 (1975) 89.Google Scholar
  2. 2.
    J.-P. DESCLAUX, At. Data Nucl. Data Table, 12 (1973) 311.Google Scholar
  3. 3.
    J. B. MANN, Acad. Sci. USSR. Inst. Hist. Sci. Technol., Nauka, Moscow, 1976, p. 161.Google Scholar
  4. 4.
    K. OTOZAI, N. TAKAHASHI, Radiochim. Acta, 31 (1982) 201.Google Scholar
  5. 5.
    N. TAKAHASHI, K. OTOZAI, Intern. J. Radio. Appl. Instr. Part A, Appl. Rad. and Isot., 37/3 (1986) 191.Google Scholar
  6. 6.
    R. C. WEAST (Ed.), Handbook of Chemistry and Physics, 78th ed., CRC Press, Inc., West Palm Beach, FL, 1998.Google Scholar
  7. 7.
    A. GHIORSO, H. NURMIA, J. HARTRIS, K. ESKOLA, P. ESKOLA, Phys. Rev., 22 (1971) 1317.Google Scholar
  8. 8.
    G. MUENZENBERG et al., Z. Phys., A317 (1984) 235.Google Scholar
  9. 9.
    G. MUENZENBERG et al., Phys., A333 (1989) 163.Google Scholar
  10. 10.
    Yu. Ts. ORGANESSIAN et al., Phys. Rev. Lett., 83 (1999) 3154.Google Scholar
  11. 11.
    V. NINOV et al., Phys. Rev. Lett., 83 (1999) 1104.Google Scholar
  12. 12.
    O. L. KELLER Jr., G. T. SEABORG, Ann. Rev. Nucl. Sci., 27 (1979) 139.Google Scholar
  13. 13.
    D. C. HOFFMAN, Radiochim. Acta, 72 (1996) 1.Google Scholar
  14. 14.
    M. SCHAEDEL et al., Nature, 388 (1997) 55.Google Scholar
  15. 15.
    B. WIERCZINSKI et al., Radiochim. Acta, 69 (1995) 77.Google Scholar
  16. 16.
    K. E. GREGORICH et al., Radiochim. Acta, 43 (1988) 22.Google Scholar
  17. 17.
    K. OTOZAI, Private communication, 1977.Google Scholar
  18. 18.
    L. PAULING, J. SHERMAN, Z. f. Krist., 81 (1932) 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • N. Takahashi
    • 1
  1. 1.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations