Oxidation of Metals

, Volume 57, Issue 3–4, pp 193–216 | Cite as

Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate

  • H. Asteman
  • J.-E. Svensson
  • L.-G. Johansson


The influence of temperature and flow rate on the oxidation of 304L steel in O2/H2O mixtures was investigated. Polished samples were isothermally exposed to dry O2 and O2+40% H2O at 500–800°C at 0.02–13 cm/sec flow velocity, for 168 hr. The samples were analyzed by gravimetry, XRD, ESEM/EDX, and AES depth profiling. The oxidation of 304L in water vapor/oxygen mixtures at 500–800°C is strongly influenced by chromium evaporation. The loss of chromium tends to convert the protective chromia-rich oxide initially formed into a poorly protective, iron-rich oxide. The rate of oxidation depends on flow rate; high flow rates result in an early breakdown of the protective oxide. The most rapid breakdown of the protective oxide occurs at the highest temperature (800°C) and the highest gas flow (4000 ml/min=13 cm/sec). The oxide formed close to grain boundaries in the metal is more protective, while other parts, grain surfaces suffer breakaway corrosion. The protective oxide consists of a Cr-rich 50–200-nm thick M2O3 film, while the parts experiencing breakaway corrosion form a 10–30-μm thick Fe-rich M2O3/M3O4 scale. The results show that chromium evaporation is a key process affecting the oxidation resistance of chromia formers and marginal chromia formers in O2/H2O mixtures.

oxidation high-temperature corrosion marginal chromia formers water vapor effect chromia evaporation breakaway corrosion temperature dependence flow-rate dependence 304L 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. T. Fujii and R. A. Meussner, J. Electrochem. Soc. 111, 1215 (1964).Google Scholar
  2. 2.
    A. S. Khanna and P. Kofstad, Intern. Conf. Microscopy Oxidation (Institute of Materials, London, 1990), p. 113.Google Scholar
  3. 3.
    P. Kofstad, High-Temperature Corrosion (Chap. 11, Elsevier Applied Science, London, 1988), pp. 382-385.Google Scholar
  4. 4.
    G. Hultquist, G. K. Chuah, and K. L. Tan, Corros. Sci. 31, 149 (1990).Google Scholar
  5. 5.
    A. Holt and P. Kofstad, Solid State Ionics 69, 137 (1994).Google Scholar
  6. 6.
    H. C. Graham and H. H. Davies, J. Amer. Ceram. Soc. 54, 89 (1971).Google Scholar
  7. 7.
    H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxid. Met. 52, 161 (1999).Google Scholar
  8. 8.
    C. S. Tedmond, Jr., J. Electrochem. Soc. 113, 766 (1966).Google Scholar
  9. 9.
    H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxid. Met. 4, 11 (2000).Google Scholar
  10. 10.
    B. B. Ebbinghaus, Combustion Flame 93, 119 (1993).Google Scholar
  11. 11.
    Jun Eu Tang, M. Halvarsson, H. Asteman, and J.-E. Svensson, Micron, in press.Google Scholar
  12. 12.
    I. G. Wright, Metals Handbook, Vol. 13, Corrosion, 9th edn (ASM, Materials Park, OH, 1987), p. 97.Google Scholar
  13. 13.
    R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, Oxid. Met. 37, 81 (1992).Google Scholar
  14. 14.
    C. Piehl, Zs. Toekei, and H. J. Grabke, Mater. High Temp. 2, 243 (2000).Google Scholar
  15. 15.
    A. Rahmel and J. Tobolski, Corros. Sci. 5, 333 (1965).Google Scholar
  16. 16.
    M. Thiele, H. Teichmann, W. Schwarz, and W. J. Quadakkers, VGB Kraftwerkstechnik, p. 77 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • H. Asteman
    • 1
  • J.-E. Svensson
    • 2
  • L.-G. Johansson
    • 1
  1. 1.Department of ChemistryGöteborg UniversityGöteborgSweden
  2. 2.Department of Environmental Inorganic ChemistryChalmers University of TechnologySweden

Personalised recommendations