Scientometrics

, 53:351 | Cite as

Research profiling: Improving the literature review

  • Alan L. Porter
  • Alisa Kongthon
  • Jye-Chyi (JC) Lu
Article

Abstract

We propose enhancing the traditional literature review through “research profiling”. This broad scan of contextual literature can extend the span of science by better linking efforts across research domains. Topical relationships, research trends, and complementary capabilities can be discovered, thereby facilitating research projects. Modern search engine and text mining tools enable research profiling by exploiting the wealth of accessible information in electronic abstract databases such as MEDLINE and Science Citation Index. We illustrate the potential by showing sixteen ways that “research profiling” can augment a traditional literature review on the topic of data mining.

References

  1. 1.
    Vickery, C. E., Cotugna, N., Broadening students' perspectives on literature review, American Dietetic Association Journal, 89 (1989) 1286-1289.Google Scholar
  2. 2.
    Chubin, D. E., Connolly, T., Research trails and science policies: Local and extra-local negotiations of scientific work, In: N. Elias et al. (Eds), Scientific Establishments and Hierarchies. Sociology of the Sciences, Yearbook Vol. 6 Dordrecht: D. Reidel, pp. 293-311 (1982).Google Scholar
  3. 3.
    Hart, C. Doing a Literature Review. London/Thousand Oaks, CA: Sage. (1998).Google Scholar
  4. 4.
    Stiles, R. A., Mick, S. S., Classifying quality initiatives: A conceptual paradigm for literature review and policy analysis, Hospital & Health Services Administration, 39 (1994) 309-326.Google Scholar
  5. 5.
    Sherwood, P., Reviews: Hungarian literature, Modern Language Review, 89 (1994) 1054-1056.Google Scholar
  6. 6.
    Bannigan, K., Droogan, J., Entwistle, V., Systematic reviews: What do they involve? Nursing Times, 18 (1997) 52-53.Google Scholar
  7. 7.
    Dew, M. A., Bromet, E. J., Brent, D., Greenhouse, J. B., A quantitative literature review of the effectiveness of suicide prevention centers, Journal of Consulting & Clinical Psychology, 55 (1987) 239-244.CrossRefGoogle Scholar
  8. 8.
    Bowen, C. W., A quantitative literature review of cooperative learning effects on high school and college chemistry achievement, Journal of Chemical Education, 77 (2000) 116-119.CrossRefGoogle Scholar
  9. 9.
    Schinnar, A. P., Rothbard, A. B., Kanter, R., Jung, Y. S., An empirical literature review of definitions of severe and persistent mental illness, American Journal of Psychiatry, 147(1990) 1602-1608.Google Scholar
  10. 10.
    Ottenbacher, K., Quantitative reviewing: The literature review as scientific inquiry, American Journal of Occupational Therapy, 37 (1983) 313-319.Google Scholar
  11. 11.
    Sugarman, J., McCrory, D. C., Hubal, R. C., Getting meaningful informed consent from older adults: A structured literature review of empirical research, Journal of American Geriatric Society, 46 (1998) 517-524.Google Scholar
  12. 12.
    Glass, G., McGaw, B., Smith, M., Meta-analysis in Social Research. Beverly Hills, CA: Sage (1981).Google Scholar
  13. 13.
    Cooper, H. M., The Integrative Research Review: Moving Beyond Meta-Analysis. Newbury Park, CA: Sage (1989).Google Scholar
  14. 14.
    Lipsey, M. W., Wilson, D. B., Practical Meta-Analysis. Thousand Oaks, CA: Sage (2001).Google Scholar
  15. 15.
    Robey, R. R., Dalebout, S. D., A tutorial on conducting meta-analyses of clinical outcome research, Journal of Speech, Language, and Hearing Research, 41 (1998) 1227-1241.Google Scholar
  16. 16.
    Hedges, L. V., Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press (1998).Google Scholar
  17. 17.
    Borgman, C. L., Editor's Introduction, In: C. L. Borgman (Ed.), Scholarly Communication and Bibliometrics. Newbury Park, CA: Sage, pp. 10-27 (1990).Google Scholar
  18. 18.
    Van Raan, A. F. J., R&D evaluation at the beginning of the new century, Research Evaluation, 9 (2000) 81-86.Google Scholar
  19. 19.
    Wormell, I., Bibliometric analysis of the welfare topic, Scientometrics, 48 (2000) 203-236.CrossRefGoogle Scholar
  20. 20.
    Vossen, M., Hage, J. J., Karim, R. B., Formulation of trichoroacetic acid peeling solution: A bibliometric analysis, Plastic and Reconstructive Surgery, 105 (2000) 1088-1094.Google Scholar
  21. 21.
    Losiewicz, P., Oard, D. W., Kostoff, R. N., Textual data mining to support science and technology management, Journal of Intelligent Information Systems, 15 (2000) 99-119.CrossRefGoogle Scholar
  22. 22.
    Paisley, W., The Future of Bibliometrics, In C. L. Borgman (Ed.), Scholarly Communication and Bibliometrics. Newbury Park, CA: Sage, pp. 281-299 (1990).Google Scholar
  23. 23.
    Moore A. W., An Introductory Tutorial on KD-trees, Extract from A. W. Moore's Phd. thesis: Efficient Memory-based Learning for Robot Control, Computer Laboratory, University of Cambridge, Technical Report No. 209 (1991).Google Scholar
  24. 24.
    Mascoli G. J., Automated dynamic strain gage data reduction using fuzzy c-means clustering, Proceedings of 1995 IEEE International Conference on Fuzzy Systems, pp. 2207-2214 (1995).Google Scholar
  25. 25.
    Soh L. K., Segmentation of satellite imagery of natural scenes using data mining, IEEE Transactions of Geoscience and Remote Sensing, 37 (1999) 1086-1099.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tyree E. W., Long J. A., The use of linked line segments for cluster representation and data reduction, Pattern Recognition Letters 20 (1999) 21-29.MATHCrossRefGoogle Scholar
  27. 27.
    Jimenez L. O., Landgrebe D. A., Hyperspectral data analysis and supervised feature reduction via projection pursuit, IEEE Transactions on Geoscience and Remote Sensing 37 (1999) 2653-2667.CrossRefGoogle Scholar
  28. 28.
    Fan, J. Lin, S. K., Test of significance when data are curves, Journal of the American Statistical Association, 93 (1998) 1007-1021.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Lu, J. C., Methodology of mining massive data sets for improving manufacturing quality/efficiency, In: Data Mining for Design and Manufacturing: Methods and Applications D. Braha (Ed), as a volume in a series on Massive Computing. Kluwer Academic Publishers: New York (in press).Google Scholar
  30. 30.
    Witten, I. H., Frank, E., Data Mining, San Francisco: Morgan Kaufmann Publishers (1999).Google Scholar
  31. 31.
    Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., Song, F., Methods for Meta-analysis in Medical Research, New York: John Wiley, Chapter 5. (2000).Google Scholar
  32. 32.
    Schroder M., Seidel K., Datcu M., Bayesian modeling of remote sensing image content, IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS'99) (3) 1810-1812 (1999).Google Scholar
  33. 33.
    Raghavan S., Cromp R., Srinivasan S., Poovendran R., Campbell W., Kanal L., Extracting an image similarity index using meta data content for image mining applications, Proceeds of the SPIE — The International Society for Optical Engineering 2962 (1997) 78-91.Google Scholar
  34. 34.
    Benediktsson, J., Sveinsson, J., Arnason, K., Classification and integration of multitype data, IEEE 1998 International Geoscience and Remote Sensing Symposium (IGARSS'98) pp. 177-179 (1998).Google Scholar
  35. 35.
    Anand, S. S., Bell, D. A., Hughes, J. G., IEE Colloquium on Knowledge Discovery in Databases 9, (1995) 1.Google Scholar
  36. 36.
    Shmueli, O., Widom, J., Sheikholeslami, G., Chatterjee, S., Zhang, A., Gupta, A., Wavecluster: a multi-resolution clustering approach for very large spatial databases, Proceedings of the Twenty-Fourth International Conference on Very-Large Databases, pp. 428-439 (1998).Google Scholar
  37. 37.
    Gibert, K., Aluja, T., Cortes, U., Knowledge discovery with clustering based on rules, Principles of Data Mining and Knowledge Discovery. Second European Symposium, PKDD'98. Proceedings pp. 83-92 (1998).Google Scholar
  38. 38.
    Zaki, M. J., Parthasarathy, S., Wei Li, A localized algorithm for parallel association mining, SPAA'97. 9 th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 321-330 (1997).Google Scholar
  39. 39.
    Watts, R. J., Porter, A. L., Innovation forecasting, Technological Forecasting and Social Change 56 (1997) 25-47.CrossRefGoogle Scholar
  40. 40.
    Sumathi, S., Sivanandam, S.N., Ravindran, R., Design of a hybrid model classifier for data mining applications, Proceedings of the SPIE — The International Society for Optical Engineering, 4057 (2000) 49-60.Google Scholar
  41. 41.
    Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A., French, J., Clustering large datasets in arbitrary metric Spaces, Proceedings 15 th International Conference on Data Engineering, pp. 502-511 (1999).Google Scholar
  42. 42.
    Cheng, H. G., Lim, A., Beng, C. O., Kian-Lee T., Efficient indexing of high-dimensional data through dimensionality reduction, Data & Knowledge Engineering, 32 (2) (2000) 115-130.CrossRefGoogle Scholar
  43. 43.
    Tagare, H. D., Increasing retrieval efficiency by index tree adaptation, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries pp. 28-35 (1997).Google Scholar
  44. 44.
    Newman, N. C., Porter, A. L., Yang, J., Information professionals: Changing tools, changing roles, Information Outlook, 5 (3) (2001) 24-30.Google Scholar
  45. 45.
    Porter, A.L., Text Mining for Technology Foresight (http://tpac.gatech.edu)Google Scholar
  46. 46.
    Kostoff, R. N., Various reports on text mining, including text discovery processes: http://www.scicentral.com/G-scipol.html#reports; http://www.dtic.mil/dtic/kostoff/index.htmlGoogle Scholar
  47. 47.
    Gordon, M. D., Lindsay R. K., Toward discovery support systems: A replication, re-examination, and extension of Swanson's work on literature-based discovery of a connection between Raynaud's disease and fish oil, JASIS, 47 (1996) 116-128.CrossRefGoogle Scholar
  48. 48.
    Swanson, D. R. Smalheiser, N. R., An interactive system for finding complementary literatures: A stimulus to scientific discovery, Artificial Intelligence, 91 (1997) 183-203.MATHCrossRefGoogle Scholar
  49. 49.
    Porter, A. L., Schoeneck, D., Mining electronic R&D information in support of resource management, 8 th International Symposium on Society and Resource Management Bellingham, WA (2000).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alan L. Porter
    • 1
  • Alisa Kongthon
  • Jye-Chyi (JC) Lu
  1. 1.School of Industrial and Systems EngineeringGeorgia TechAtlantaUSA

Personalised recommendations