Plant Molecular Biology

, Volume 48, Issue 5–6, pp 751–764

Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis

  • David S. Skibbe
  • Feng Liu
  • Tsui-Jung Wen
  • Marna D. Yandeau
  • Xiangqin Cui
  • Jun Cao
  • Carl R. Simmons
  • Patrick S. Schnable
Article

Abstract

Cytoplasmic male sterility is a maternally transmitted inability to produce viable pollen. Male sterility occurs in Texas (T) cytoplasm maize as a consequence of the premature degeneration of the tapetal cell layer during microspore development. This sterility can be overcome by the combined action of two nuclear restorer genes, rf1 and rf2a. The rf2a gene encodes a mitochondrial aldehyde dehydrogenase (ALDH) that is capable of oxidizing a variety of aldehydes. Six additional ALDH genes were cloned from maize and Arabidopsis. In vivo complementation assays and in vitro enzyme analyses demonstrated that all six genes encode functional ALDHs. Some of these ALDHs are predicted to accumulate in the mitochondria, others in the cytosol. The intron/exon boundaries of these genes are highly conserved across maize and Arabidopsis and between mitochondrial and cytosolic ALDHs. Although animal, fungal, and plant genomes each encode both mitochondrial and cytosolic ALDHs, it appears that either the gene duplications that generated the mitochondrial and the cytosolic ALDHs occurred independently within each lineage or that homogenizing gene conversion-like events have occurred independently within each lineage. All studied plant genomes contain two confirmed or predicted mitochondrial ALDHs. It appears that these mitochondrial ALDH genes arose via independent duplications after the divergence of monocots and dicots or that independent gene conversion-like events have homogenized the mitochondrial ALDH genes in the monocot and dicot lineages. A computation approach was used to identify amino acid residues likely to be responsible for functional differences between mitochondrial and cytosolic ALDHs.

cytoplasmic male sterility functional divergence gene family evolution nuclear restorer genes prediction of functional residues rf2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.Google Scholar
  2. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.Google Scholar
  3. Asker, H. and Davies, D.D. 1985. Mitochondrial aldehyde dehydrogenases from higher plants. Phytochemistry 24: 689-693.Google Scholar
  4. Boronat, A. and Aguilar, J. 1979. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme. J. Bact. 140: 320-326.Google Scholar
  5. Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C. and Stuber, C.W. 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519-526.Google Scholar
  6. Caballero, E., Baldoma, L., Ros, J., Boronat, A. and Aguilar, J. 1983. Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli. J. Biol. Chem. 258: 7788-7792.Google Scholar
  7. Causse, M.A., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., Xiao, J., Yu, Z., Ronald, P.C., Harrington, S.E., Second, G., McCouch, S.R. and Tanksley, S.D. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251-1274.Google Scholar
  8. Cui, X., Wise R.P. and Schnable, P.S. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272: 1334-1336.Google Scholar
  9. Duvick, D.N. 1965. Cytoplasmic pollen sterility in corn. Adv. Genet. 13: 1-56.Google Scholar
  10. Gale, M.D. and Devos, K.M. 1998. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95: 1971-1974.Google Scholar
  11. Gaut, B.S. and Doebley, J.F. 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. 94: 6809-6814.Google Scholar
  12. Gu, X. 1999. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. 16: 1664-1674.Google Scholar
  13. Guex, N. and Peitsch, M.C. 1997. Swiss-Model and the Swiss-PdbViewer: an environment for comparing protein modeling. Electrophoresis 18: 2714-2723.Google Scholar
  14. Hempel, J., Liu, Z.-J., Perozich, J, Rose, J., Lindahl, R. and Wang, B.-C. 1997. Conserved residues in the aldehyde dehydrogenase family: locations in the class 3 tertiary structure. Adv. Exp. Med. Biol. 414: 9-13.Google Scholar
  15. Henikoff, S., Greene, E.A., Pietrokovski, S., Bork, P., Attwood, T.K. and Hood, L. 1997. Gene families: the taxonomy of protein paralogs and chimeras. Science 278: 609-614.Google Scholar
  16. Hidalgo, E., Chen, Y.M., Lin, E.C. and Aguilar, J. 1991. Molecular cloning and DNA sequencing of the Escherichia coli K-12 ald gene encoding aldehyde dehydrogenase. J. Bact. 173: 6118-6123.Google Scholar
  17. Klyosov, A.A. 1996. Kinetics and specificity of human liver aldehyde dehydrogenase toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry 35: 4457-4467.Google Scholar
  18. Koradi, R., Billeter, M. and Withrich, K. 1996. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 51-55.Google Scholar
  19. Laughnan, J.R. and Gabay-Laughnan, S. 1983. Cytoplasmic male sterility in maize. Annu. Rev. Genet. 17: 27-48.Google Scholar
  20. Li, W.H. 1983. Evolution of duplicated genes. In: M. Nei and R.K. Koehn (Eds.) Evolution of Genes and Proteins, Sinauer, Sunderland, MA.Google Scholar
  21. Li, Y., Nakazono, M., Tsutsumi, N., and Hirai, A. 2000. Molecular and cellular characterization of a cDNA clone encoding a novel isozyme of aldehyde dehydrogenase from rice. Gene 249: 67-74.Google Scholar
  22. Lindahl, R. 1992. Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 27: 283-355.Google Scholar
  23. Liu, F., Cui, X., Horner, H.T., Weiner, H. and Schnable, P.S. 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13: 1063-1078.Google Scholar
  24. Liu, Z.-J., Sun, Y.-J., Rose, J., Chung, Y.-J., Hsiao, C.-D., Chang, W.-R., Kuo, I., Perozich, J., Lindahl, R., Hempel, J. and Wang, B.-C. 1997. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nature Struct. Biol. 4: 317-326.Google Scholar
  25. Marumo, S. 1986. Auxins. In: N. Takahashi (Ed.) Chemistry of Plant Hormones, CRC Press, Boca Raton, FL, pp. 9-56.Google Scholar
  26. Moore, G. 2000. Cereal chromosome structure, evolution, and pairing. Annu. Rev. Plant Physiol. Plant Mol. Biol 51: 195-222.Google Scholar
  27. Moore, S.A., Baker, H.M., Blythe, T.J., Kitson, K.E., Kitson, T.M. and Baker, E.N. 1998. Sheep liver cytosolic aldehyde dehydrogenases: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure 6: 1541-1651.Google Scholar
  28. Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.Google Scholar
  29. Nakazono, M., Tsuji, H., Li, Y., Saisho, D., Arimura, S., Tsutsumi, N. and Hirai, A. 2000. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol 124: 587-598.Google Scholar
  30. Ohno, S. 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin.Google Scholar
  31. op den Camp, R.G. and Kuhlemeier, C. 1997. Aldehyde dehydrogenase in tobacco pollen. Plant Mol. Biol. 35: 355-365.Google Scholar
  32. Perozich, J., Nicholas, H., Wang, B.C., Lindahl, R. and Hempel, J. 1999. Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 8: 137-146.Google Scholar
  33. Schauenstein, E., Esterbauer H. and Zollner, H. 1977. Aldehydes in Biological Systems: Their Natural Occurrence and Biological Activities. Pion, London.Google Scholar
  34. Schnable, P.S. and Wise, R.P. 1998. The molecular basis of cytoplasmic male sterility. Trends Plant Sci. 3: 175-180.Google Scholar
  35. Sjöling, O. and Glaser E. 1998. Mitochondrial targeting peptide in plants. Trends Plant Sci. 3: 136-140.Google Scholar
  36. Steinmetz, C.G., Xie P., Weiner H. and Hurley T.D. 1997. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure 5: 701-711.Google Scholar
  37. Swofford, D.L. 2000. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA.Google Scholar
  38. Tadege, M. and Kuhlemeier C. 1997. Aerobic fermentation during tobacco pollen development. Plant Mol. Biol. 35: 343-354.Google Scholar
  39. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876-4882.Google Scholar
  40. Vasiliou, V., Bairoch, A., Tipton, K.F. and Nebert, D.W. 1999. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymophisms, and recommended nomenclaturue based on divergent evolution and chromosomal mapping. Pharmacogenetics 9: 421-434.Google Scholar
  41. Warmke, H.E. and Lee, S.-L.J. 1977. Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J. Hered. 68: 213-222.Google Scholar
  42. Wightman, F. and Cohen, D. 1968. Intermediary steps in the enzymatic conversion of tryptophan to IAA in cell-free systems from mung bean seedlings. In: F. Wightman and G. Setterfield (Eds.) Biochemistry and Physiology of Plant Growth Substances (Proceedings of the 6th International Conference on Plant Growth Substances), Runge Press, Ottawa, p. 273.Google Scholar
  43. Wilson, W.A., Harrington, S.E., Woodman, W.L., Lee, M., Sorrells, M.E. and McCouch, S.R. 1999. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153: 453-473.Google Scholar
  44. Wise R.P. and Schnable, P.S. 1994. Mapping complementary genes in maize: positioning the rf1 and rf2 nuclear restorers relative to visible and RFLP markers. Theor. Appl. Genet. 88: 785-795.Google Scholar
  45. Wise, R.P., Pring D.R. and Gengenbach, B.G. 1987. Mutation to male fertility and toxin insensitivity in T-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc. Natl. Acad. Sci. USA 84: 2858-2862.Google Scholar
  46. Wise, R.P., Bronson, C., Schnable, P.S. and Horner, H.T. 1999. Tcytoplasmic male sterility of maize. Adv. Agron. 65: 79-130.Google Scholar
  47. Yoshida, A., Rzhetsky, A., Hsu, L.C. and Chang, C. 1998. Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 251: 549-557.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David S. Skibbe
    • 1
    • 2
  • Feng Liu
    • 1
    • 3
  • Tsui-Jung Wen
    • 5
  • Marna D. Yandeau
    • 1
    • 3
  • Xiangqin Cui
    • 1
    • 3
  • Jun Cao
    • 1
    • 3
  • Carl R. Simmons
    • 4
  • Patrick S. Schnable
    • 1
  1. 1.Department of Zoology & GeneticsIowa State UniversityAmesUSA
  2. 2.Molecular, Cellular, and Developmental Biology ProgramIowa State UniversityAmesUSA
  3. 3.Interdepartmental Genetics ProgramIowa State UniversityAmesUSA
  4. 4.Pioneer Hi-Bred Intl. Inc.JohnstonUSA
  5. 5.Department of AgronomyIowa State UniversityAmesUSA
  6. 6.Center for Plant GenomicsIowa State UniversityAmesUSA
  7. 7.Iowa State UniversityAmesUSA

Personalised recommendations