Advertisement

Plant Molecular Biology

, Volume 48, Issue 5–6, pp 463–481 | Cite as

Development and mapping of SSR markers for maize

  • Natalya Sharopova
  • Michael D. McMullen
  • Linda Schultz
  • Steve Schroeder
  • Hector Sanchez-Villeda
  • Jack Gardiner
  • Dean Bergstrom
  • Katherine Houchins
  • Susan Melia-Hancock
  • Theresa Musket
  • Ngozi Duru
  • Mary Polacco
  • Keith Edwards
  • Thomas Ruff
  • James C. Register
  • Cory Brouwer
  • Richard Thompson
  • Riccardo Velasco
  • Emily Chin
  • Michael Lee
  • Wendy Woodman-Clikeman
  • Mary Jane Long
  • Emmanuel Liscum
  • Karen Cone
  • Georgia Davis
  • Edward H. CoeJr.
Article

Abstract

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. The objectives of this project were to isolate, characterize, and map a comprehensive set of SSR markers for maize (Zea mays L.). We developed 1051 novel SSR markers for maize from microsatellite-enriched libraries and by identification of microsatellite-containing sequences in public and private databases. Three mapping populations were used to derive map positions for 978 of these markers. The main mapping population was the intermated B73 × Mo17 (IBM) population. In mapping this intermated recombinant inbred line population, we have contributed to development of a new high-resolution map resource for maize. The primer sequences, original sequence sources, data on polymorphisms across 11 inbred lines, and map positions have been integrated with information on other public SSR markers and released through MaizeDB at URL:www.agron.missouri.edu. The maize research community now has the most detailed and comprehensive SSR marker set of any plant species.

genetic linkage map microsatellite simple sequence repeat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akkaya, M.S., Bhagwat, A.A. and Cregan, P.B. 1995. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139.Google Scholar
  2. Beavis, W.D., Lee, M., Grant, D., Hallauer, A.R., Owens, T., Katt, M. and Blair, D. 1992. The influence of random mating on recombination among RFLP loci. Maize Genet. Coop. Newsl. 66: 52-53.Google Scholar
  3. Bryan, G.J., Collins, A.J., Stephenson, P., Orry, A., Smith, J.B. and Gale, M.D. 1997. Isolation and charcterization of microsatellites from hexaploid bread wheat. Theor. Appl. Genet. 94: 557-563.Google Scholar
  4. Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C. and Stuber, C.W. 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519-526.Google Scholar
  5. Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., Shaw, N., Lane, C.R., Lim, E.P., Kalyanaraman, N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A., Warrington, J., Lipshutz, R., Daley, G.Q. and Lander, E.S. 1999. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22: 231-238.Google Scholar
  6. Casa, A.M., Brouwer, C., Nagel, A., Wang, L., Zhang, Q., Kresovich, S. and Wessler, S.R. 2000. The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc. Natl. Acad. Sci. USA 97: 10083-10089.Google Scholar
  7. Chin, E., Senior, L., Shu, H. and Smith, J.S.C. 1996. Maize simple repetitive DNA sequences: abundance and allele variation. Genome 39: 866-873.Google Scholar
  8. Covarrubias-Prieto, J., Hallauer, A.R. and Lamkey, K.R. 1989. Intermating F2 populations of maize. Genetika 21: 111-126.Google Scholar
  9. Cregan, P.B., Jarvik, T., Bush, A.L., Shoemaker, R.C., Lark, K.G., Kahler, A.L., Kaya, N., VanToai, T.T., Lohnes, D.G., Chung, J. and Specht, J.E. 1999. An integrated molecular genetic linkage map of the soybean genome. Crop Sci. 39: 1464-1490.Google Scholar
  10. Davis, G.L., McMullen, M.D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Houchins, K., Chao, S., and Coe, E.H., Jr. 1999. A maize map standard with sequenced core markers, grass genome reference points, and 932 ESTs in a 1736-locus map. Genetics 152: 1137-1172.Google Scholar
  11. Dib, C., Fauré, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Mirissette, J. and Weissenbach, J. 1996. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature 380: 152-154.Google Scholar
  12. Dietrich, W.F., Miller, J., Steen, R., Merchant, M.A., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M.J., Ingalls, K.A., O'Connor, T.J., Evans, C.A., DeAngelis, M.M., Levinson, D.M., Kruglyak, L., Goodman, N., Copelang, N.G., Jenkins, N.A., Hawkins, T.L., Stein, L., Page, D.C. and Lander, E.S. 1996. A comprehensive genetic map of the mouse genome. Nature 380: 149-152.Google Scholar
  13. Doebley, J., Stec, A., Wendel, J. and Edwards, M. 1990. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc. Natl. Acad. Sci. USA 87: 9888-9892.Google Scholar
  14. Edwards, K.J., Barker, J.H.A., Daly, A., Jones, C. and Karp, A. 1996. Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20: 758-760.Google Scholar
  15. Faris, J.D., Laddomada, B. and Gill, B.S. 1998. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149: 319-327.Google Scholar
  16. Gardiner, J.M., Coe, E.H., Melia-Hancock, S., Hoisington, D.A. and Chao, S. 1993. Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134: 917-930.Google Scholar
  17. Gill, K.S., Gill, B.S., Endo, T.R. and Boyko, E.V. 1996a. Identification and high-density mapping of gene-rich region in chromosome group 5 of wheat. Genetics 143: 1001-1012.Google Scholar
  18. Gill, K.S., Gill, B.S., Endo, T.R. and Taylor, T. 1996b. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144: 1883-1891.Google Scholar
  19. Haanstra, J.P.W., Wye, C., Verbakel, H., Meijer-Dekens, F., van den Berg, P., Odinot, P., van Heusden, A.W., Tanksley, S., Lindhout, P. and Peleman, J. 1999. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor. Appl. Genet. 99: 254-271.Google Scholar
  20. Haldane, J.B.S. 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. J. Genet. 8: 299-309.Google Scholar
  21. Hanson, W.D. 1959a. Theoretical distribution of the initial linkage block length intact in the gametes of a population intermated for n generations. Genetics 44: 839-846.Google Scholar
  22. Hanson, W.D. 1959b. The breakup of initial linkage block under selected mating system. Genetics 44: 857-868.Google Scholar
  23. Harushima, Y., Kurata, N., Yano, M., Nagamura, Y., Sasaki, T., Minobe, Y. and Nakagahra, M. 1996. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor. Appl. Genet. 92: 145-150.Google Scholar
  24. Kunzel, G., Korzun, L. and Meister, A. 2000. Cytologically integrated physical restriction fragment length polymorphism maps for barley genome based on translocation breakpoints. Genetics 154: 397-412.Google Scholar
  25. Lee, M., Beavis, W., Vogel, J., Woodman, W., Tingey, S., Long, M.J., Krakowsky, M., Hallauer, A., Austin, D. and Ritland, D. 1999. Tools for high resolution genetic mapping in maize: status report. Proceedings Plant Animal Genome VII, January 17-21, 1999, San Diego, CA, p. 146.Google Scholar
  26. Liu, S.-S., Kowalsky, S.P., Lan, T.-H., Feldmann, K.A. and Peterson, A.H. 1996. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142: 247-258.Google Scholar
  27. Lyttle, T.W. 1991. Segregation distorters. Annu. Rev. Genet. 25: 511-557.Google Scholar
  28. Milbourne, D., Meyer, R.C., Collins, A.J., Ramsay, L.D., Gebhardt, C. and Waugh, R. 1998. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259: 233-245.Google Scholar
  29. Rafalski, J.A. and Tingey, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9: 275-280.Google Scholar
  30. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H, Leroy, P. and Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149: 2007-2023.Google Scholar
  31. Taramino, G. and Tingey, S. 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287.Google Scholar
  32. Tautz, D., Trick, M. and Dover, G.A. 1986. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652-656.Google Scholar
  33. Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T. and McCouch, S.R.. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) Theor. Appl. Genet. 100: 697-712.Google Scholar
  34. Vuylsteke, M., Mank, R., Antonise, R., Bastiaans, E., Senior, M.L., Stuber, C.W., Melchinger, A.E., Lübberstedt, T., Xia, X.C., Stam, P., Zabeau, M. and Kuiper, M. 1999. Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99: 921-935.Google Scholar
  35. Wilson, W.A., Harrington, S.E., Woodman, W.L., Lee, M., Sorrels, M.E. and McCouch, S.R. 1999. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153: 453-473.Google Scholar
  36. Xu, Y., Zhu, L., Xiao, J., Huang, N. and McCouch, S.R. 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet. 253: 535-545.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Natalya Sharopova
    • 1
  • Michael D. McMullen
    • 2
    • 3
  • Linda Schultz
    • 1
  • Steve Schroeder
    • 1
  • Hector Sanchez-Villeda
    • 1
  • Jack Gardiner
    • 1
  • Dean Bergstrom
    • 1
  • Katherine Houchins
    • 2
  • Susan Melia-Hancock
    • 1
  • Theresa Musket
    • 1
  • Ngozi Duru
    • 1
  • Mary Polacco
    • 2
    • 3
  • Keith Edwards
  • Thomas Ruff
    • 4
  • James C. Register
    • 5
  • Cory Brouwer
    • 5
  • Richard Thompson
    • 6
  • Riccardo Velasco
    • 6
  • Emily Chin
    • 7
  • Michael Lee
    • 8
  • Wendy Woodman-Clikeman
    • 8
  • Mary Jane Long
    • 8
  • Emmanuel Liscum
    • 9
  • Karen Cone
    • 9
  • Georgia Davis
    • 3
  • Edward H. CoeJr.
    • 2
    • 3
  1. 1.Missouri Maize ProjectUniversity of MissouriColumbiaUSA
  2. 2.USDA-ARS Plant Genetics Research UnitColumbiaUSA
  3. 3.Plant Science UnitUniversity of MissouriColumbiaUSA
  4. 4.MonsantoSt. LouisUSA
  5. 5.Pioneer Hi-Bred InternationalJohnstonUSA
  6. 6.Max Planck Institut für ZüchtungsforschungKölnGermany
  7. 7.Garst Seed CompanySlaterUSA
  8. 8.Department of AgronomyIowa State UniversityAmesUSA
  9. 9.Division of Biological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations