The Ramanujan Journal

, Volume 6, Issue 1, pp 7–149 | Cite as

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

  • Stephen C. Milne
Article

Abstract

In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi's special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan's tau function τ(n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the η-function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n2 + n, 2n2n that appear in Macdonald's work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C nonterminating 6φ5 summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 and n(n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Sierpinski (1907), Uspensky (1913, 1925, 1928), Bulygin (1914, 1915), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Bell (1919), Estermann (1936), Rankin (1945, 1962), Lomadze (1948), Walton (1949), Walfisz (1952), Ananda-Rau (1954), van der Pol (1954), Krätzel (1961, 1962), Bhaskaran (1969), Gundlach (1978), Kac and Wakimoto (1994), and, Liu (2001). We list these authors by the years their work appeared.

Jacobi elliptic functions associated continued fractions regular C-fractions Hankel or Turánian determinants Fourier series Lambert series Eisenstein series inclusion/exclusion Laplace expansion formula for determinants Schur functions multiple basic hypergeometric series C nonterminating 6φ5 summation theorem lattice sums 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.H. Abel, “Recherches sur les fonctions elliptiques,” J. Reine Angew. Math. 2 (1827), 101-181; reprinted in Œuvres Complètes T1, Grondahl and Son, Christiania, 1881, pp. 263-388; reprinted by Johnson Reprint Corporation, New York, 1965.Google Scholar
  2. 2.
    W.A. Al-Salam and L. Carlitz, “Some determinants of Bernoulli, Euler, and related numbers,” Portugal. Math. 18(2) (1959), 91-99.Google Scholar
  3. 3.
    K. Ananda-Rau, “On the representation of a number as the sum of an even number of squares,” J. Madras Univ. Sect. B 24 (1954), 61-89.Google Scholar
  4. 4.
    G.E. Andrews, “Applications of basic hypergeometric functions,” SIAM Rev. 16 (1974), 441-484.Google Scholar
  5. 5.
    G.E. Andrews, “q-Series: Their development and application in analysis, number theory, combinatorics, physics and computer algebra,” in NSF CBMS Regional Conference Series, Vol. 66, 1986.Google Scholar
  6. 6.
    G.E. Andrews, R. Askey, and R. Roy, “Special functions,” in Encyclopedia of Mathematics and its Applications, Vol. 71 (G.-C. Rota, ed.), Cambridge University Press, Cambridge, 1999.Google Scholar
  7. 7.
    G.E. Andrews and B.C. Berndt, Ramanujan's Lost Notebook, Part I, Springer-Verlag, PNew York, in preparation.Google Scholar
  8. 8.
    T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Vol. 41 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1976.Google Scholar
  9. 9.
    R. Askey and M.E.H. Ismail, “Recurrence relations, continued fractions and orthogonal polynomials,” Mem. Amer. Math. Soc. 300 (1984), 108 pp.Google Scholar
  10. 10.
    H. Au-Yang and J.H.H. Perk, “Critical correlations in a Z-invariant inhomogeneous Ising model,” Phys. A 144 (1987), 44-104.Google Scholar
  11. 11.
    I.G. Bashmakova, “Diophantus and diophantine equations,” Vol. 20 of The Dolciani Mathematical Expositions, Mathematical Association of America, Washington, DC, 1997, xvi+90 pp.; translated from the 1972 Russian original by Abe Shenitzer and updated by Joseph Silverman.Google Scholar
  12. 12.
    I.G. Bashmakova and G.S. Smirnova, “The birth of literal algebra,” Amer. Math. Monthly 106 (1999), 57-66; translated from the Russian and edited by Abe Shenitzer.Google Scholar
  13. 13.
    E.F. Beckenbach, W. Seidel, and O. Szász, “Recurrent determinants of Legendre and of ultraspherical polynomials,” Duke Math. J. 18 (1951), 1-10.Google Scholar
  14. 14.
    E.T. Bell, “On the number of representations of 2n as a sum of 2r squares,” Bull. Amer. Math. Soc. 26 (1919), 19-25.Google Scholar
  15. 15.
    E.T. Bell, “Theta expansions useful in arithmetic,” The Messenger of Mathematics (New Series) 53 (1924), 166-176.Google Scholar
  16. 16.
    E.T. Bell, “On the power series for elliptic functions,” Trans. Amer. Math. Soc. 36 (1934), 841-852.Google Scholar
  17. 17.
    E.T. Bell, “The arithmetical function M(n, f, g) and its associates connected with elliptic power series,” Amer. J. Math. 58 (1936), 759-768.Google Scholar
  18. 18.
    E.T. Bell, “Polynomial approximations for elliptic functions,” Trans. Amer. Math. Soc. 44 (1938), 47-57.Google Scholar
  19. 19.
    C. Berg and G. Valent, “The Nevanlinna parameterization for some indeterminate Stieltjes moment problems associated with birth and death processes,” Methods Appl. Anal. 1 (1994), 169-209.Google Scholar
  20. 20.
    B.C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989.Google Scholar
  21. 21.
    B.C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.Google Scholar
  22. 22.
    B.C. Berndt, “Ramanujan's theory of theta-functions,” in Theta Functions From the Classical to the Modern (M. Ram Murty, ed.), Vol. 1 of CRM Proceedings & Lecture Notes, American Mathematical Society, Providence, RI, 1993, 1-63.Google Scholar
  23. 23.
    B.C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.Google Scholar
  24. 24.
    B.C. Berndt, “Fragments by Ramanujan on Lambert Series,” in Number Theory and Its Applications (Kyoto, 1997) (K. Györy and S. Kanemitsu, eds.), Vol. 2 of Dev. Math., Kluwer Academic Publishers, Dordrecht, 1999, pp. 35-49.Google Scholar
  25. 25.
    M. Bhaskaran, “A plausible reconstruction of Ramanujan's proof of his formula for ? 4s (q),” in Ananda Rau Memorial Volume, Publications of the Ramanujan Institute, No. 1., Ramanujan Institute, Madras, 1969, pp. 25-33.Google Scholar
  26. 26.
    M.N. Bleicher and M.I. Knopp, “Lattice points in a sphere,” Acta Arith. 10 (1964/1965), 369-376.Google Scholar
  27. 27.
    F. van der Blij[i], “The function τ of S. Ramanujan,” Math. Student 18 (1950), 83-99.Google Scholar
  28. 28.
    J.M. Borwein and P.B. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987.Google Scholar
  29. 29.
    D.M. Bressoud, “Proofs and confirmations. The story of the alternating sign matrix conjecture,” in MAA Spectrum, Mathematical Association of America, Washington, DC/Cambridge University Press, Cambridge, 1999, pp. 245-256.Google Scholar
  30. 30.
    D.M. Bressoud and J. Propp, “How the alternating sign matrix conjecture was solved,” Notices Amer. Math. Soc. 46 (1999), 637-646.Google Scholar
  31. 31.
    C. Brezinski, History of Continued Fractions and Padé Approximants, Vol. 12 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991.Google Scholar
  32. 32.
    D.J. Broadhurst, “On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory,” J. Math. Phys., to appear.Google Scholar
  33. 33.
    V. Bulygin, “Sur une application des fonctions elliptiques au problème de représentation des nombres entiers par une somme de carrés” Bull. Acad. Imp. Sci. St. Petersbourg Ser. VI 8 (1914), 389-404; B. Boulyguine, “Sur la représentation d'un nombre entier par une somme de carrés,” Comptes Rendus Paris 158 (1914), 328-330.Google Scholar
  34. 34.
    V. Bulygin (B. Boulyguine), “Sur la représentation d'un nombre entier par une somme de carrés,” Comptes Rendus Paris 161 (1915), 28-30.Google Scholar
  35. 35.
    J.L. Burchnall, “An algebraic property of the classical polynomials,” Proc. London Math. Soc. 1(3) (1951), 232-240.Google Scholar
  36. 36.
    L. Carlitz, “Hankel determinants and Bernoulli numbers,” Tôhoku Math. J. 5(2) (1954), 272-276.Google Scholar
  37. 37.
    L. Carlitz, “Note on sums of 4 and 6 squares,” Proc. Amer. Math. Soc. 8 (1957), 120-124.Google Scholar
  38. 38.
    L. Carlitz, “Some orthogonal polynomials related to elliptic functions,” Duke Math. J. 27 (1960), 443-459.Google Scholar
  39. 39.
    L. Carlitz, “Bulygin's method for sums of squares. The arithmetical theory of quadratic forms, I,” in Proc. Conf., Louisiana State Univ., Baton Rouge, LA, 1972 (dedicated to Louis Joel Mordell); also in J. Number Theory 5 (1973), 405-412.Google Scholar
  40. 40.
    R. Chalkley, “A persymmetric determinant,” J. Math. Anal. Appl. 187 (1994), 107-117.Google Scholar
  41. 41.
    H.H. Chan, “On the equivalence of Ramanujan's partition identities and a connection with the Rogers-Ramanujan continued fraction,” J. Math. Anal. Appl. 198 (1996), 111-120.Google Scholar
  42. 42.
    H.H. Chan, private communication, August 1996.Google Scholar
  43. 43.
    K. Chandrasekharan, Elliptic Functions, Vol. 281 of Grundlehren Math. Wiss, Springer-Verlag, Berlin, 1985.Google Scholar
  44. 44.
    T.S. Chihara, An Introduction to Orthogonal Polynomials, Vol. 13 of Mathematics and Its Applications Gordon and Breach, New York, 1978.Google Scholar
  45. 45.
    S.H. Choi and D. Gouyou-Beauchamps, “Enumération de tableaux de Young semi-standard,” in Series Formelles et Combinatoire Algebrique: Actés du Colloque (M. Delest, G. Jacob, and P. Leroux, eds.), Université Bordeaux I, 2-4 May, 1991, pp. 229-243.Google Scholar
  46. 46.
    D.V. Chudnovsky and G.V. Chudnovsky, “Computational problems in arithmetic of linear differential equations. Some diophantine applications,” Number Theory New York, 1985-88 (D. & G. Chudnovsky, H. Cohn, and M. Nathanson, eds.), Vol. 1383 of Lecture Notes in Math., Springer-Verlag, New York, 1989, pp. 12-49.Google Scholar
  47. 47.
    D.V. Chudnovsky and G.V. Chudnovsky, “Hypergeometric and modular function identities, and new rational approximations to and continued fraction expansions of classical constants and functions,” A Tribute to Emil Grosswald: Number theory and related analysis (M. Knopp and M. Sheingorn, eds.), Vol. 143 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 1993, pp. 117-162.Google Scholar
  48. 48.
    L. Comtet, Advanced Combinatorics, D. Reidel Pub. Co., Dordrecht-Holland/Boston-USA, 1974.Google Scholar
  49. 49.
    E. Conrad, “A note on certain continued fraction expansions of Laplace transforms of Dumont's bimodular Jacobi elliptic functions,” preprint.Google Scholar
  50. 50.
    E. Conrad, A Handbook of Jacobi Elliptic Functions, Class notes (1996), preprint.Google Scholar
  51. 51.
    J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. (with additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen, and B.B. Venkov), Vol. 290 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, 1999.Google Scholar
  52. 52.
    T.L. Curtright and C.B. Thorn, “Symmetry patterns in the mass spectra of dual string models,” Nuclear Phys. B 274 (1986), 520-558.Google Scholar
  53. 53.
    T.W. Cusick, “Identities involving powers of persymmetric determinants,” Proc. Cambridge Philos. Soc. 65 (1969), 371-376.Google Scholar
  54. 54.
    H. Datta, “On the theory of continued fractions,” Proc. Edinburgh Math. Soc. 34 (1916), 109-132.Google Scholar
  55. 55.
    P. Delsarte, “Nombres de Bell et polynômes de Charlier,” C.R. Acad. Sc. Paris (Series A) 287 (1978), 271-273.Google Scholar
  56. 56.
    L.E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966.Google Scholar
  57. 57.
    A.C. Dixon, “On the doubly periodic functions arising out of the curve x 3 + y 3−3αxy =1,” The Quarterly Journal of Pure and Applied Mathematics 24 (1890), 167-233Google Scholar
  58. 58.
    D. Dumont, “Une approche combinatoire des fonctions elliptiques de Jacobi,” Adv. in Math. 41 (1981), 1-39.Google Scholar
  59. 59.
    D. Dumont, “Pics de cycle et d´erivées partielles,” Séminaire Lotharingien de Combinatoire 13(B13a) (1985), 19 pp.Google Scholar
  60. 60.
    D. Dumont, “Le paramétrage de la courbe d'´equation x 3 + y 3 =1” (Une introduction élémentaire aux fonctions elliptiques), preprint (May 1988).Google Scholar
  61. 61.
    F.J. Dyson, “Missed opportunities,” Bull. Amer. Math. Soc. 78 (1972), 635-653.Google Scholar
  62. 62.
    R. Ehrenborg, “The Hankel determinant of exponential polynomials,” Amer. Math. Monthly 107 (2000), 557-560.Google Scholar
  63. 63.
    A. Erdélyi (with A. Magnus, F. Oberhettinger, and F. Tricomi), Higher Transcendental Functions, Bateman Manuscript Project (A. Erdélyi, ed.), Vol. II, McGraw-Hill Book Co., New York, 1953; reissued by Robert E. Krieger Pub. Co., Malabar, Florida, 1981 and 1985.Google Scholar
  64. 64.
    T. Estermann, “On the representations of a number as a sum of squares,” Acta Arith. 2 (1936), 47-79.Google Scholar
  65. 65.
    L. Euler, “De fractionibus continuis dissertatio,” Comm. Acad. Sci. Imp. St. Pétersbourg 9 (1737), 98-137; reprinted inWorks. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 14 (C. Boehm and G. Faber, eds.), B.G. Teubner, Lipsiae 1925, pp. 187-215; see also, “An essay on continued fractions,” Math. Systems Theory 18 (1985), 295-328; translated from the Latin by Myra F.Wyman and Bostwick F. Wyman.Google Scholar
  66. 66.
    L. Euler, “De fractionibus continuis observationes,” Comm. Acad. Sci. Imp. St. Pétersbourg 11 (1739), 32-81; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 14 (C. Boehm and G. Faber, eds.), B.G. Teubner, Lipsiae, 1925, pp. 291-349.Google Scholar
  67. 67.
    L. Euler, Introduction in Analysin Infinitorum, Vol. I, Marcum-Michaelem Bousquet, Lausanne, 1748; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, and P. Stackel, eds.), Ser. I, Vol. 8 (A. Krazer and F. Rudio, eds.), B.G. Teubner, Lipsiae, 1922, pp. 1-392, (see bibliographie on page b*); see also, Introduction to Analysis of the Infinite: Book I, Springer-Verlag, New York, 1988; translated from the Latin by John D. Blanton.Google Scholar
  68. 68.
    L. Euler, De transformatione serierum in fractiones continuas: ubi simul haec theoria non mediocriter amplificatur, Opuscula Analytica, t. ii, Petropoli: Typis Academiae Imperialis Scientiarum (1783-1785), 1785, pp. 138-177; reprinted in Works. 1911-. Leonhardi Euleri Opera Omnia (F. Rudio, A. Krazer, A. Speiser, and L.G. du Pasquier, eds.), Ser. I, Vol. 15 (G. Faber, ed.), B.G. Teubner, Lipsiae, 1927, pp. 661-700.Google Scholar
  69. 69.
    P. Flajolet, “Combinatorial aspects of continued fractions,” Discrete Math. 32 (1980), 125-161.Google Scholar
  70. 70.
    P. Flajolet, “On congruences and continued fractions for some classical combinatorial quantities,” Discrete Math. 41 (1982), 145-153.Google Scholar
  71. 71.
    P. Flajolet and J. Françon, “Elliptic functions, continued fractions and doubled permutations,” European J. Combin. 10 (1989), 235-241.Google Scholar
  72. 72.
    F.G. Frobenius, “ Ñber Relationen zwischen denNäherungsbrüchen von Potenzreihen,” J. Reine Angew. Math. 90 (1881), 1-17; reprinted inFrobenius' Gesammelte Abhandlungen (J.-P. Serre, ed.),Vol. 2, Springer-Verlag, Berlin, 1968, pp. 47-63.Google Scholar
  73. 73.
    F.G. Frobenius and L. Stickelberger, “Zur Theorie der elliptischen Functionen,” J. Reine Angew. Math. 83 (1877), 175-179; reprinted in Frobenius' Gesammelte Abhandlungen (J.-P. Serre, ed.), Vol. 1, Springer-Verlag, Berlin, 1968, pp. 335-339.Google Scholar
  74. 74.
    F.G. Frobenius and L. Stickelberger, “Ñber die Addition und Multiplication der elliptischen Functionen,” J. Reine Angew. Math. 88 (1880), 146-184; reprinted in Frobenius' Gesammelte Abhandlungen (J.-P. Serre, ed.), Vol. 1, Springer-Verlag, Berlin, 1968, pp. 612-650.Google Scholar
  75. 75.
    M. Fulmek and C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis, II,” European J. Combin. 21 (2000), 601-640.Google Scholar
  76. 76.
    H. Garland, “Dedekind's-function and the cohomology of infinite dimensional Lie algebras,” Proc. Nat. Acad. Sci., U.S.A. 72 (1975), 2493-2495.Google Scholar
  77. 77.
    H. Garland and J. Lepowsky, “Lie algebra homology and the Macdonald-Kac formulas,” Invent. Math. 34 (1976), 37-76.Google Scholar
  78. 78.
    F. Garvan, private communication, March 1997.Google Scholar
  79. 79.
    G. Gasper and M. Rahman, “Basic hypergeometric series,” in Encyclopedia of Mathematics and its Applications, Vol. 35 (G.-C. Rota, ed.), Cambridge University Press, Cambridge, 1990.Google Scholar
  80. 80.
    J. Geronimus, “On some persymmetric determinants,” Proc. Roy. Soc. Edinburgh 50 (1930), 304-309.Google Scholar
  81. 81.
    J. Geronimus, “On some persymmetric determinants formed by the polynomials of M. Appell,” J. London Math. Soc. 6 (1931), 55-59.Google Scholar
  82. 82.
    I. Gessel and G. Viennot, “Binomial determinants, paths, and hook length formulae,” Adv. in Math. 58 (1985), 300-321.Google Scholar
  83. 83.
    F. Gesztesy and R. Weikard, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-An analytic approach,” Bull. Amer. Math. Soc. (N.S.) 35 (1998), 271-317.Google Scholar
  84. 84.
    J.W.L. Glaisher, “On the square of the series in which the coefficients are the sums of the divisors of the exponents,” Mess. Math., New Series 14 (1884-85), 156-163; reprinted in J.W.L. Glaisher, Mathematical Papers, Chiefly Connected with the q-series in Elliptic Functions (1883-1885), Cambridge, W. Metcalfe and Son, Trinity Street, 1885, pp. 371-379.Google Scholar
  85. 85.
    J.W.L. Glaisher, “On the numbers of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen,” Proc. London Math. Soc. 5(2) (1907), 479-490.Google Scholar
  86. 86.
    J.W.L. Glaisher, “On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares,” Quart. J. Pure and Appl. Math. Oxford 38 (1907), 1-62.Google Scholar
  87. 87.
    J.W.L. Glaisher, “On the representations of a number as the sum of fourteen and sixteen squares,” Quart. J. Pure and Appl. Math. Oxford 38 (1907), 178-236.Google Scholar
  88. 88.
    J.W.L. Glaisher, “On the representations of a number as the sum of eighteen squares,” Quart. J. Pure and Appl. Math. Oxford 38 (1907), 289-351.Google Scholar
  89. 89.
    M.L. Glasser, private communication, April 1996.Google Scholar
  90. 90.
    M.L. Glasser and I.J. Zucker, Lattice Sums, Vol. 5 of Theoretical Chemistry: Advances and Perspectives (H. Eyring and D. Henderson, eds.), Academic Press, New York, 1980, pp. 67-139.Google Scholar
  91. 91.
    H.W. Gould, “Explicit formulas for Bernoulli numbers,” Amer. Math. Monthly 79 (1972), 44-51.Google Scholar
  92. 92.
    I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, John Wiley & Sons, New York, 1983.Google Scholar
  93. 93.
    I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th edn., Academic Press, San Diego, 1980; translated from the Russian by Scripta Technica, Inc., and edited by A. Jeffrey.Google Scholar
  94. 94.
    E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, New York, 1985.Google Scholar
  95. 95.
    K.-B. Gundlach, “On the representation of a number as a sum of squares,” Glasgow Math. J. 19 (1978), 173-197.Google Scholar
  96. 96.
    R.A. Gustafson, “The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras,” in Ramanujan International Symposium on Analysis, Pune, India, Dec. 26-28, 1987 (N.K. Thakare, ed.), 1989, pp. 187-224.Google Scholar
  97. 97.
    G.-N. Han, A. Randrianarivony, and J. Zeng, “Un autre q-analogue des nombres d'Euler,” Séminaire Lotharingien de Combinatoire 42(B42e) (1999), 22 pp.Google Scholar
  98. 98.
    G.-N. Han and J. Zeng, “q-Polynômes de Ghandi et statistique de Denert,” Discrete Math. 205 (1999), 119-143.Google Scholar
  99. 99.
    G.H. Hardy, “On the representation of a number as the sum of any number of squares, and in particular of five or seven,” Proc. Nat. Acad. Sci., U.S.A. 4 (1918), 189-193.Google Scholar
  100. 100.
    G.H. Hardy, “On the representation of a number as the sum of any number of squares, and in particular of five,” Trans. Amer. Math. Soc. 21 (1920), 255-284.Google Scholar
  101. 101.
    G.H. Hardy, Ramanujan, Cambridge University Press, Cambridge 1940; reprinted by Chelsea, New York, 1978; reprinted by AMS Chelsea, Providence, RI, 1999; Now distributed by The American Mathematical Society, Providence, RI.Google Scholar
  102. 102.
    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford University Press, Oxford, 1979.Google Scholar
  103. 103.
    J.B.H. Heilermann, “De transformatione serierum in fractiones continuas,” Dr. Phil. Dissertation, Royal Academy of Münster, 1845.Google Scholar
  104. 104.
    J.B.H. Heilermann, “Ñber die Verwandlung der Reihen in Kettenbrüche,” J. Reine Angew. Math. 33 (1846), 174-188Google Scholar
  105. 105.
    H. Helfgott and I.M. Gessel, “Enumeration of tilings of diamonds and hexagons with defects,” Electron. J. Combin. 6(R16) (1999), 26 pp.Google Scholar
  106. 106.
    E. Hendriksen and H. Van Rossum, “Orthogonal moments,” Rocky Mountain J. Math. 21 (1991), 319-330.Google Scholar
  107. 107.
    L.K. Hua, Introduction to Number Theory, Springer-Verlag, New York, 1982.Google Scholar
  108. 108.
    J.G. Huard, Z.M. Ou, B.K. Spearman, and K.S. Williams, “Elementary evaluation of certain convolution sums involving divisor functions,” in Number Theory for the Millennium (M.A. Bennett, B.C. Berndt, N. Boston, H.G. Diamond, A.J. Hildebrand, and W. Philipp, eds.), Vol. 2, A.K. Peters, Natick, MA, to appear.Google Scholar
  109. 109.
    M.E.H. Ismail, J. Letessier, G. Valent, and J. Wimp, “Two families of associated Wilson polynomials,” Canad. J. Math. 42 (1990), 659-695.Google Scholar
  110. 110.
    M.E.H. Ismail and D.R. Masson, “Generalized orthogonality and continued fractions,” J. Approx. Theory 83 (1995), 1-40.Google Scholar
  111. 111.
    M.E.H. Ismail and D.R. Masson, “Some continued fractions related to elliptic functions,” Continued Fractions: From Analytic Number Theory to Constructive Approximation, Columbia, MO, 1998 (B.C. Berndt and F. Gesztesy, eds.), Vol. 236 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 1999, 149-166.Google Scholar
  112. 112.
    M.E.H. Ismail and M. Rahman, “The associated Askey-Wilson polynomials,” Trans. Amer. Math. Soc. 328 (1991), 201-237.Google Scholar
  113. 113.
    M.E.H. Ismail and D. Stanton, “Classical orthogonal polynomials as moments,” Canad. J. Math. 49 (1997), 520-542.Google Scholar
  114. 114.
    M.E.H. Ismail and D. Stanton, “More orthogonal polynomials as moments,” Mathematical Essays in Honor of Gian-Carlo Rota, Cambridge, MA, 1996 (B.E. Sagan and R.P. Stanley, eds.), Vol. 161 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1998, pp. 377-396.Google Scholar
  115. 115.
    M.E.H. Ismail and G. Valent, “On a family of orthogonal polynomials related to elliptic functions,” Illinois J. Math. 42 (1998), 294-312.Google Scholar
  116. 116.
    M.E.H. Ismail, G. Valent, and G. Yoon, “Some orthogonal polynomials related to elliptic functions,” J. Approx. Theory 112 (2001), 251-278.Google Scholar
  117. 117.
    C.G.J. Jacobi, “Fundamenta Nova Theoriae Functionum Ellipticarum,” Regiomonti. Sumptibus fratrum Bornträger, 1829; reprinted in Jacobi's Gesammelte Werke, Vol. 1, Reimer, Berlin, 1881-1891, pp. 49-239; reprinted by Chelsea, New York, 1969; Now distributed by The American Mathematical Society, Providence, RI.Google Scholar
  118. 118.
    N. Jacobson, Basic Algebra I, W.H. Freeman and Co., San Francisco, CA, 1974.Google Scholar
  119. 119.
    W.B. Jones and W.J. Thron, “Continued Fractions: Analytic Theory and Applications,” in Encyclopedia of Mathematics and Its Applications, Vol. 11 (G.-C. Rota, ed.), Addison-Wesley, London, 1980; Nowdistributed by Cambridge University Press, Cambridge.Google Scholar
  120. 120.
    V.G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and number theory,” in Lie Theory and Geometry, in honor of Bertram Kostant (J.L. Brylinski, R. Brylinski, V. Guillemin and V. Kac, eds.), Vol. 123 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1994, pp. 415-456.Google Scholar
  121. 121.
    V.G. Kac and M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function,” Comm. Math. Phys. 215 (2001), 631-682.Google Scholar
  122. 122.
    S. Karlin and G. Szeg?, “On certain determinants whose elements are orthogonal polynomials,” J. Analyse Math. 8 (1961), 1-157; reprinted in Gabor Szeg?: Collected Papers, Vol. 3 (R. Askey, ed.), Birkhäuser Boston, Inc., Boston, MA, 1982, pp. 603-762.Google Scholar
  123. 123.
    M.I. Knopp, “On powers of the theta-function greater than the eighth,” Acta Arith. 46 (1986), 271-283.Google Scholar
  124. 124.
    R. Koekoek and R.F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,” TU Delft, The Netherlands, 1998; available on the www: ftp://ftp.twi.tudelft.nl/TWI/publications/ tech-reports/1998/DUT-TWI-98-17.ps.gz.Google Scholar
  125. 125.
    C. Krattenthaler, “Advanced determinant calculus,” Séminaire Lotharingien de Combinatoire 42(B42q) (1999), 67 pp.Google Scholar
  126. 126.
    E. Krätzel, “Ñber die Anzahl der Darstellungen von natürlichen Zahlen als Summe von 4k Quadraten,” Wiss. Z. Friedrich-Schiller-Univ. Jena 10 (1960/61), 33-37.Google Scholar
  127. 127.
    E. Krätzel, “Ñber die Anzahl der Darstellungen von nat¨urlichen Zahlen als Summe von 4k + 2 Quadraten,” Wiss. Z. Friedrich-Schiller-Univ. Jena 11 (1962), 115-120.Google Scholar
  128. 128.
    D.B. Lahiri, “On a type of series involving the partition function with applications to certain congruence relations,” Bull. Calcutta Math. Soc. 38 (1946), 125-132.Google Scholar
  129. 129.
    D.B. Lahiri, “On Ramanujan's function τ and the divisor function ?k (n)-I,” Bull. Calcutta Math. Soc. 38 (1946), 193-206.Google Scholar
  130. 130.
    D.B. Lahiri, “On Ramanujan's function τ and the divisor function ? k (n)-II,” Bull. Calcutta Math. Soc. 39 (1947), 33-52.Google Scholar
  131. 131.
    D.B. Lahiri, “Identities connecting the partition, divisor and Ramanujan's functions,” Proc. Nat. Inst. Sci. India 34A (1968), 96-103.Google Scholar
  132. 132.
    D.B. Lahiri, “Some arithmetical identities for Ramanujan's and divisor functions,” Bull. Austral. Math. Soc. 1 (1969), 307-314.Google Scholar
  133. 133.
    A. Lascoux, “Inversion des matrices de Hankel,” Linear Algebra Appl. 129 (1990), 77-102.Google Scholar
  134. 134.
    D.F. Lawden, Elliptic Functions and Applications, Vol. 80 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989.Google Scholar
  135. 135.
    B. Leclerc, “On identities satisfied by minors of a matrix,” Adv. in Math. 100 (1993), 101-132.Google Scholar
  136. 136.
    B. Leclerc, “Powers of staircase Schur functions and symmetric analogues of Bessel polynomials,” Discrete Math. 153 (1996), 213-227.Google Scholar
  137. 137.
    B. Leclerc, Private communication, July 1997.Google Scholar
  138. 138.
    B. Leclerc, “On certain formulas of Karlin and Szeg?,” Séminaire Lotharingien de Combinatoire 41(B41d) (1998), 21 pp.Google Scholar
  139. 139.
    A.M. Legendre, “Traité des Fonctions Elliptiques et des Intégrales Euleriennes,” t. III, Huzard-Courcier, Paris, 1828, pp. 133-134.Google Scholar
  140. 140.
    D.H. Lehmer, “Some functions of Ramanujan,” Math. Student 27 (1959), 105-116.Google Scholar
  141. 141.
    J. Lepowsky, “Generalized Verma modules, loop space cohomology and Macdonald-type identities,” Ann. Sci. ´ Ecole Norm. Sup. 12(4) (1979), 169-234.Google Scholar
  142. 142.
    J. Lepowsky, “Affine Lie algebras and combinatorial identities,” in Lie Algebras and Related Topics, Rutgers Univ. Press., New Brunswick, N.J., 1981, Vol. 933 of Lecture Notes in Math., Springer-Verlag, Berlin 1982, pp. 130-156.Google Scholar
  143. 143.
    G.M. Lilly and S.C. Milne, “The C l Bailey Transform and Bailey Lemma,” Constr. Approx. 9 (1993), 473-500.Google Scholar
  144. 144.
    J. Liouville, “Extrait d'une lettre à M. Besge,” J. Math. Pures Appl. 9(2) (1864), 296-298.Google Scholar
  145. 145.
    D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd edn., Oxford University Press, Oxford, 1958.Google Scholar
  146. 146.
    Z.-G. Liu, “On the representation of integers as sums of squares,” in q-Series with Applications to Combinatorics, Number Theory, and Physics (B.C. Berndt and Ken Ono, eds.), Vol. 291 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 2001, pp. 163-176.Google Scholar
  147. 147.
    G.A. Lomadze, “On the representation of numbers by sums of squares,” Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 16 (1948), 231-275. (in Russian; Georgian summary).Google Scholar
  148. 148.
    J.S. Lomont and J.D. Brillhart, Elliptic Polynomials, Chapman & Hall/CRC Press, Boca Raton, FL, 2000.Google Scholar
  149. 149.
    L. Lorentzen and H. Waadeland, Continued Fractions With Applications, Vol. 3 of Studies in Computational Mathematics, North-Holland, Amsterdam, 1992.Google Scholar
  150. 150.
    J. Lützen, “Joseph Liouville 1809-1882: Master of pure and applied mathematics,” in Studies in the History of Mathematics and Physical Sciences, Vol. 15, Springer-Verlag, New York, 1990.Google Scholar
  151. 151.
    I.G. Macdonald, “Affine root systems and Dedekind's-function,” Invent. Math. 15 (1972), 91-143.Google Scholar
  152. 152.
    I.G. Macdonald, “Some conjectures for root systems,” SIAM J. Math. Anal. 13 (1982), 988-1007.Google Scholar
  153. 153.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995.Google Scholar
  154. 154.
    G.B. Mathews, “On the representation of a number as a sum of squares,” Proc. London Math. Soc. 27 (1895-96), 55-60.Google Scholar
  155. 155.
    H. McKean and V. Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge University Press, Cambridge, 1997.Google Scholar
  156. 156.
    M.L. Mehta, Elements of Matrix Theory, Hindustan Publishing Corp., Delhi, 1977.Google Scholar
  157. 157.
    M.L. Mehta, “Matrix theory: Selected topics and useful results,” Les Editions de Physique, Les Ulis, France, 1989; see Appendix A.5 (In India, sold and distributed by Hindustan Publishing Corp.).Google Scholar
  158. 158.
    S.C. Milne, “An elementary proof of the Macdonald identities for A l(1),” Adv. in Math. 57 (1985), 34-70.Google Scholar
  159. 159.
    S.C. Milne, “Basic hypergeometric series very well-poised in U(n),” J. Math. Anal. Appl. 122 (1987), 223-256.Google Scholar
  160. 160.
    S.C. Milne, “Classical partition functions and the U(n + 1) Rogers-Selberg identity,” Discrete Math. 99 (1992), 199-246.Google Scholar
  161. 161.
    S.C. Milne, “The C l Rogers-Selberg identity,” SIAM J. Math. Anal. 25 (1994), 571-595.Google Scholar
  162. 162.
    S.C. Milne, “New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function,” Proc. Nat. Acad. Sci., U.S.A. 93 (1996), 15004-15008.Google Scholar
  163. 163.
    S.C. Milne, “Balanced 3 ? 2 summation theorems for U(n) basic hypergeometric series,” Adv. in Math. 131 (1997), 93-187.Google Scholar
  164. 164.
    S.C. Milne, “Hankel determinants of Eisenstein series,” in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Gainesville, 1999 (F.G. Garvan and M. Ismail, eds.), Vol. 4 of Dev. Math., Kluwer Academic Publishers, Dordrecht, 2001, pp. 171-188.Google Scholar
  165. 165.
    S.C. Milne, “A new formula for Ramanujan's tau function and the Leech lattice,” in preparation.Google Scholar
  166. 166.
    S.C. Milne, “Continued fractions, Hankel determinants, and further identities for powers of classical theta functions,” in preparation.Google Scholar
  167. 167.
    S.C. Milne, “Sums of squares, Schur functions, and multiple basic hypergeometric series,” in preparation.Google Scholar
  168. 168.
    S.C. Milne and G.M. Lilly, “The A l and C l Bailey transform and lemma,” Bull. Amer. Math. Soc. (N.S.) 26 (1992), 258-263.Google Scholar
  169. 169.
    S.C. Milne and G.M. Lilly, “Consequences of the A l and C l Bailey transform and Bailey lemma,” Discrete Math. 139 (1995), 319-346.Google Scholar
  170. 170.
    S.C. Mitra, “On the expansion of the Weierstrassian and Jacobian elliptic functions in powers of the argument,” Bull. Calcutta Math. Soc. 17 (1926), 159-172.Google Scholar
  171. 171.
    L.J. Mordell, “On Mr. Ramanujan's empirical expansions of modular functions,” Proc. Cambridge Philos. Soc. 19 (1917), 117-124.Google Scholar
  172. 172.
    L.J. Mordell, “On the representation of numbers as the sum of 2r squares,” Quart. J. Pure and Appl. Math. Oxford 48 (1917), 93-104.Google Scholar
  173. 173.
    L.J. Mordell, “On the representations of a number as a sum of an odd number of squares,” Trans. Cambridge Philos. Soc. 22 (1919), 361-372.Google Scholar
  174. 174.
    T. Muir, “New general formulae for the transformation of infinite series into continued fractions,” Trans. Roy. Soc. Edinburgh 27 (1872-1876; see Part IV. 1875-76), 467-471.Google Scholar
  175. 175.
    T. Muir, “On the transformation of Gauss' hypergeometric series into a continued fraction,” Proc. London Math. Soc. 7 (1876), 112-119.Google Scholar
  176. 176.
    T. Muir, “On Eisenstein's continued fractions,” Trans. Roy. Soc. Edinburgh 28 (1876-1878; see Part I. 1876-1877), 135-143.Google Scholar
  177. 177.
    T. Muir, The Theory of Determinants in the Historical Order of Development, Vol. I (1906), Vol. II (1911), Vol. III (1920), Vol. IV (1923), Macmillan and Co., Ltd., London.Google Scholar
  178. 178.
    T. Muir, “The theory of persymmetric determinants in the historical order of development up to 1860,” Proc. Roy. Soc. Edinburgh 30 (1910), 407-431.Google Scholar
  179. 179.
    T. Muir, “The theory of persymmetric determinants from 1894 to 1919,” Proc. Roy. Soc. Edinburgh 47 (1926-27), 11-33.Google Scholar
  180. 180.
    T. Muir, Contributions to the History of Determinants 1900-1920, Blackie & Son, London and Glasgow, 1930.Google Scholar
  181. 181.
    T. Muir, A Treatise on the Theory of Determinants, Dover Publications, New York, 1960.Google Scholar
  182. 182.
    M.B. Nathanson, Elementary Methods in Number Theory, Vol. 195 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.Google Scholar
  183. 183.
    K. Ono, “Representations of integers as sums of squares,” J. Number Theory, to appear.Google Scholar
  184. 184.
    K. Ono, S. Robins, and P.T. Wahl, “On the representation of integers as sums of triangular numbers,” Aequationes Math. 50 (1995), 73-94.Google Scholar
  185. 185.
    O. Perron, Die Lehre von den Kettenbrüchen, 2nd edn., B.G. Teubner, Leipzig and Berlin, 1929; reprinted by Chelsea, New York, 1950.Google Scholar
  186. 186.
    Von K. Petr, “Ñber die Anzahl der Darstellungen einer Zahl als Summe von zehn und zwölf Quadraten,” Archiv Math. Phys. 11(3) (1907), 83-85.Google Scholar
  187. 187.
    B. van der Pol, “The representation of numbers as sums of eight, sixteen and twenty-four squares,” Nederl. Akad.Wetensch. Proc. Ser. A 57 (1954), 349-361; Nederl. Akad. Wetensch. Indag. Math. 16 (1954), 349-361.Google Scholar
  188. 188.
    G. Prasad, An Introduction to the Theory of Elliptic Functions and Higher Transcendentals, University of Calcutta, 1928.Google Scholar
  189. 189.
    H. Rademacher, Topics in Analytic Number Theory, Vol. 169 of Grundlehren Math. Wiss., Springer-Verlag, New York, 1973.Google Scholar
  190. 190.
    Ch. Radoux, “Calcul effectif de certains déterminants de Hankel,” Bull. Soc. Math. Belg. Sér B 31 (1979), 49-55.Google Scholar
  191. 191.
    Ch. Radoux, “Déterminant de Hankel construit sur les polynômes de Hérmite,” Ann. Soc. Sci. Bruxelles Sér. I 104 (1990), 59-61.Google Scholar
  192. 192.
    Ch. Radoux, “Déterminant de Hankel construit sur des polynômes liés aux nombres de d´erangements,” European J. Combin. 12 (1991), 327-329.Google Scholar
  193. 193.
    Ch. Radoux, “Déterminants de Hankel et théorème de Sylvester,” Actes de la 28e session du Séminaire Lotharingien de Combinatoire, publication de l'I.R.M.A. No. 498/S-28, Strasbourg, 1992, pp. 115-122.Google Scholar
  194. 194.
    S. Ramanujan, “On certain arithmetical functions,” Trans. Cambridge Philos. Soc. 22 (1916), 159-184; reprinted in Collected Papers of Srinivasa Ramanujan, Chelsea, New York, 1962, pp. 136-162; reprinted by AMS Chelsea, Providence, RI, 2000; Now distributed by The American Mathematical Society, Providence, RI.Google Scholar
  195. 195.
    S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.Google Scholar
  196. 196.
    A. Randrianarivony, “Fractions continues, combinatoire et extensions de nombres classiques,” Ph.D. Thesis, Univ. Louis Pasteur, Strasbourg, France, 1994.Google Scholar
  197. 197.
    A. Randrianarivony, “Fractions continues, q-nombres de Catalan et q-polynômes de Genocchi,” European J. Combin. 18 (1997), 75-92.Google Scholar
  198. 198.
    A. Randrianarivony, “q, p-analogue des nombres de Catalan,” Discrete Math. 178 (1998), 199-211.Google Scholar
  199. 199.
    A. Randrianarivony and J.A. Zeng, “Extension of Euler numbers and records of up-down permutations,” J. Combin. Theory Ser. A 68 (1994), 86-99.Google Scholar
  200. 200.
    A. Randrianarivony and J. Zeng, “A family of polynomials interpolating several classical series of numbers,” Adv. in Appl. Math. 17 (1996), 1-26.Google Scholar
  201. 201.
    R.A. Rankin, “On the representations of a number as a sum of squares and certain related identities,” Proc. Cambridge Philos. Soc. 41 (1945), 1-11.Google Scholar
  202. 202.
    R.A. Rankin, “On the representation of a number as the sum of any number of squares, and in particular of twenty,” Acta Arith. 7 (1962), 399-407.Google Scholar
  203. 203.
    R.A. Rankin, “Sums of squares and cusp forms,” Amer. J. Math. 87 (1965), 857-860.Google Scholar
  204. 204.
    R.A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977.Google Scholar
  205. 205.
    D. Redmond, Number Theory: An Introduction, Marcel Dekker, New York, 1996.Google Scholar
  206. 206.
    D.P. Robbins, “Solution to problem 10387*,” Amer. Math. Monthly 104 (1997), 366-367.Google Scholar
  207. 207.
    L.J. Rogers, “On the representation of certain asymptotic series as convergent continued fractions,” Proc. London Math. Soc 4(2) (1907), 72-89.Google Scholar
  208. 208.
    A. Schett, “Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions,” Math. Comp. 30 (1976), 143-147, with microfiche supplement (See also: “Corrigendum,” Math. Comp. 31 (1977), 330).Google Scholar
  209. 209.
    A. Schett, “Recurrence formula of the Taylor series expansion coefficients of the Jacobian elliptic functions,” Math. Comp. 31 (1977), 1003-1005, with microfiche supplement.Google Scholar
  210. 210.
    W. Seidel, “Note on a persymmetric determinant,” Quart. J. Math., Oxford Ser. 4(2) (1953), 150-151.Google Scholar
  211. 211.
    J.-P. Serre, A Course in Arithmetic, Vol. 7 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1973.Google Scholar
  212. 212.
    W. Sierpinski, “Wzór analityczny na pewna funkcje liczbowa (Une formule analytique pour une fonction num´erique),” Wiadomo´sci Matematyczne Warszawa 11 (1907), 225-231 (in Polish).Google Scholar
  213. 213.
    H.J.S. Smith, Report on the Theory of Numbers, Part VI (Report of the British Association for 1865, pp. 322-375), 1894; reprinted in The Collected Mathematical Papers of H.J.S. Smith, Vol. 1 (J.W.L. Glaisher, ed.), 1894, pp. 306-311; reprinted by Chelsea, New York, 1965.Google Scholar
  214. 214.
    H.J.S. Smith, “On the orders and genera of quadratic forms containing more than 3 indeterminates,” Proc. Roy. Soc. London 16 (1867), 197-208; reprinted in The Collected Mathematical Papers of H.J.S. Smith, Vol. 1 (J.W.L. Glaisher, ed.), 1894, pp. 510-523; reprinted by Chelsea, New York, 1965.Google Scholar
  215. 215.
    R.P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks Cole, Belmont, CA, 1986.Google Scholar
  216. 216.
    M.A. Stern, “Theorie der Kettenbrüche und ihre Anwendung,” J. Reine Angew. Math. 10 (1833), 1-22, 154-166, 241-274, 364-376.Google Scholar
  217. 217.
    M.A. Stern, “Theorie der Kettenbrüche und ihre Anwendung,” J. Reine Angew. Math. 11 (1834), 33-66, 142-168, 277-306, 311-350.Google Scholar
  218. 218.
    T.J. Stieltjes, “Sur la réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable,” Ann. Fac. Sci. Toulouse 3 (1889), H. 1-17; reprinted in Œuvres Complétes T2, P. Noordhoff, Groningen, 1918, pp. 184-200; see also Œuvres Complètes (Collected Papers), Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 188-204.Google Scholar
  219. 219.
    T.J. Stieltjes, “Sur quelques intégrales définies et leur développement en fractions continues,” Quart. J. Math. 24 (1890), 370-382; reprinted in Œuvres Complètes T2, P. Noordhoff, Groningen, 1918, pp. 378-391; see alsoŒuvres Complètes (Collected Papers) Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 382-395.Google Scholar
  220. 220.
    T.J. Stieltjes, “Recherches sur les fractions continues,” Ann. Fac. Sci. Toulouse 8 (1894), J. 1-122, 9 (1895), A. 1-47; reprinted inŒuvres Complètes T2, P. Noordhoff, Groningen, 1918, pp. 402-566; (see pp. 549-554); see also Œuvres Complètes (Collected Papers), Vol. II (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 406-570 (see also pp. 609-745 for an English translation. Note especially pp. 728-733).Google Scholar
  221. 221.
    O. Szász, “Ñber Hermitesche Formen mit rekurrierender Determinante und über rationale Polynome,” Math. Z. 11 (1921), 24-57.Google Scholar
  222. 222.
    G. Szeg?, “On an inequality of Turán concerning Legendre polynomials,” Bull. Amer. Math. Soc. 54 (1948), 401-405; reprinted in Gabor Szeg?: Collected Papers, Vol. 3, 1945-1972 (R. Askey, ed.), Birkhäuser Boston, Inc., Boston, MA, 1982, pp. 69-73, 74-75.Google Scholar
  223. 223.
    O. Taussky, “Sums of squares,” Amer. Math. Monthly 77 (1970), 805-830.Google Scholar
  224. 224.
    J. Touchard, “Sur un probléme de configurations et sur les fractions continues,” Canad. J. Math. 4 (1952), 2-25.Google Scholar
  225. 225.
    P. Turán, “On the zeros of the polynomials of Legendre,”Časopis pro P?stováni Matematiky a Fysiky 75 (1950), 113-122.Google Scholar
  226. 226.
    H.W. Turnbull, The Theory of Determinants, Matrices, and Invariants, Blackie and Son, London, 1928; reprinted by Dover Publications, New York, 1960.Google Scholar
  227. 227.
    J.V. Uspensky, “Sur la représentation des nombres par les sommes des carrés,” Communications de la Sociétè mathématique de Kharkow série 2 14 (1913), 31-64 (in Russian).Google Scholar
  228. 228.
    J.V. Uspensky, “Note sur le nombre de représentations des nombres par une somme d'un nombre pair de carrés,” Bulletin de l'Académie des Sciences de l'URSS, Leningrad (Izvestija Akademii Nauk Sojuza Sovetskich Respublik. Leningrad.) Serie 6 19 (1925), 647-662 (in French).Google Scholar
  229. 229.
    J.V. Uspensky, “On Jacobi's arithmetical theorems concerning the simultaneous representation of numbers by two different quadratic forms,” Trans. Amer. Math. Soc. 30 (1928), 385-404.Google Scholar
  230. 230.
    J.V. Uspensky and M.A. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939.Google Scholar
  231. 231.
    G. Valent, “Asymptotic analysis of some associated orthogonal polynomials connected with elliptic functions,” SIAM J. Math. Anal. 25 (1994), 749-775.Google Scholar
  232. 232.
    G. Valent, “Associated Stieltjes-Carlitz polynomials and a generalization of Heun's differential equation,” J. Comput. Appl. Math. 57 (1995), 293-307.Google Scholar
  233. 233.
    G. Valent and W. Van Assche, “The impact of Stieltjes' work on continued fractions and orthogonal polynomials: Additional material,” J. Comput. Appl. Math. 65 (1995), 419-447; this volume was devoted to the Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994).Google Scholar
  234. 234.
    W. Van Assche, “Asymptotics for orthogonal polynomials and three-term recurrences,” in Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), Vol. 294 of NATO-ASI Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, Dordrecht, 1990, pp. 435-462.Google Scholar
  235. 235.
    W. Van Assche, “The impact of Stieltjes work on continued fractions and orthogonal polynomials,” Vol. I of T.J. Stieltjes: Œuvres Complètes (Collected Papers) (G. van Dijk, ed.), Springer-Verlag, Berlin, 1993, pp. 5-37.Google Scholar
  236. 236.
    P.R. Vein, “Persymmetric determinants. I. The derivatives of determinants with Appell function elements,” Linear and Multilinear Algebra 11 (1982), 253-265.Google Scholar
  237. 237.
    P.R. Vein, “Persymmetric determinants. II. Families of distinct submatrices with nondistinct determinants,” Linear and Multilinear Algebra 11 (1982), 267-276.Google Scholar
  238. 238.
    P.R. Vein, “Persymmetric determinants. III. A basic determinant,” Linear and Multilinear Algebra 11 (1982), 305-315.Google Scholar
  239. 239.
    P.R. Vein, “Persymmetric determinants. IV. An alternative form of the Yamazaki-Hori determinantal solution of the Ernst equation,” Linear and Multilinear Algebra 12 (1982/83), 329-339.Google Scholar
  240. 240.
    P.R. Vein, “Persymmetric determinants. V. Families of overlapping coaxial equivalent determinants,” Linear and Multilinear Algebra 14 (1983), 131-141.Google Scholar
  241. 241.
    P.R. Vein and P. Dale, “Determinants, their derivatives and nonlinear differential equations,” J. Math. Anal. Appl. 74 (1980), 599-634.Google Scholar
  242. 242.
    B.A. Venkov, Elementary Number Theory, Wolters-Noordhoff Publishing, Groningen, 1970; translated from the Russian and edited by Helen Alderson (Popova).Google Scholar
  243. 243.
    R. Vermes, “Hankel determinants formed from successive derivatives,” Duke Math. J. 37 (1970), 255-259.Google Scholar
  244. 244.
    G. Viennot, “Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi,” J. Combin. Theory Ser. A 29 (1980), 121-133.Google Scholar
  245. 245.
    G. Viennot, “Une théorie combinatoire des polynômes orthogonaux généraux,” in Lecture Notes, publication de l'UQAM, Montréal (1983).Google Scholar
  246. 246.
    G. Viennot, “A combinatorial interpretation of the quotient-difference algorithm,” Technical Report No. 8611, Université de Bordeaux I, 1986.Google Scholar
  247. 247.
    A.Z. Walfisz, “On the representation of numbers by sums of squares: Asymptotic formulas,” Uspehi Mat. Nauk (N.S.) 52(6) (1952), 91-178 (in Russian); English transl. in Amer. Math. Soc. Transl. 3(2) (1956), 163-248.Google Scholar
  248. 248.
    H.S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand, New York, 1948; reprinted by Chelsea, New York, 1973.Google Scholar
  249. 249.
    J.B. Walton, “Theta series in the Gaussian field,” Duke Math. J. 16 (1949), 479-491.Google Scholar
  250. 250.
    E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th edn., Cambridge University Press, Cambridge, 1927.Google Scholar
  251. 251.
    S. Wolfram, The Mathematica Book, 4th edn., Wolfram Media/Cambridge University Press, Cambridge, 1999.Google Scholar
  252. 252.
    S. Wrigge, “Calculation of the Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k),” Math. Comp. 36 (1981), 555-564.Google Scholar
  253. 253.
    S. Wrigge, “A note on the Taylor series expansion coefficients of the Jacobian elliptic function sn(x, k),” Math. Comp. 37 (1981), 495-497.Google Scholar
  254. 254.
    D. Zagier, “A proof of the Kac-Wakimoto affine denominator formula for the strange series,” Math. Res. Letters 7 (2000), 597-604.Google Scholar
  255. 255.
    D. Zeilberger, “Proof of the alternating sign matrix conjecture,” Electron. J. Combin. 3(R13) (1996), 84 pp.Google Scholar
  256. 256.
    D. Zeilberger, “Proof of the refined alternating sign matrix conjecture,” New York J. Math. 2 (1996), 59-68.Google Scholar
  257. 257.
    J. Zeng, “Énumérations de permutations et J-fractions Continues,” European J. Combin. 14 (1993), 373-382.Google Scholar
  258. 258.
    J. Zeng, “Sur quelques propriétes de symétrie des nombres de Genocchi,” Discrete Math. 153 (1996), 319-333.Google Scholar
  259. 259.
    I. J. Zucker, “The summation of series of hyperbolic functions,” SIAM J. Math. Anal. 10 (1979), 192-206.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Stephen C. Milne
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbus

Personalised recommendations