Advertisement

Molecular and Cellular Biochemistry

, Volume 232, Issue 1–2, pp 81–85 | Cite as

Methemoglobin reductase activity and in vitro sensitivity towards oxidant induced methemoglobinemia in Swiss mice and Beagle dogs erythrocytes

  • S. Srivastava
  • A.S. Alhomida
  • N.J. Siddiqi
  • S.K. Puri
  • V.C. Pandey
Article

Abstract

The NADH methemoglobin-reductase (EC 1.6.2.2) is mainly responsible for the maintenance of hemoglobin in its reduced and active state. The present study reveals the comparative status of this enzyme in normal Beagle dogs, rats, mice, mastomys and hamsters erythrocytes. The spectrophotometric and electrophoretic determinations showed that the above mentioned enzyme was deficient in the Beagle dog's erythrocytes. Furthermore, in vitro studies on the sensitivity of these rodents and Beagle dogs hemolysate towards oxidants, like primaquine and sodium nitrate, depicted a higher level of methemoglobin formation in the Beagle dogs hemolysate as compared to that of the rodent species. The deficiency of methemoglobin reductase in Beagle dogs erythrocytes could be responsible for their increased sensitivity towards oxidant induced methemoglobinemia.

methemoglobin methemoglobin-reductase methemoglobinemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaffe ER, Hulquist DE: Cytochrome b5 reductase deficiency and enzymopenic hereditary methemoglobinemia. In: J.B. Stanbury, J.B. Wyngaarden, D.S. Fredrickson (eds). The Metabolic and Molecular Basis of Inherited Diseases, 6th edn. McGraw Hill Information Services Company, New York, 1995, pp 2269–2280Google Scholar
  2. 2.
    Leukens JN: Methemoglobinemia and other disorders accompanied by cyanosis. In: R.G. Lee (ed). Wintrobe's Clinical Hematology. McGraw Hill, Philadelphia, 1993, pp 1262–1271Google Scholar
  3. 3.
    Bodansky O: Methemoglobinemia and methemoglobin producing compounds. Pharmacol Rev 3: 144–196, 1951Google Scholar
  4. 4.
    Wennmalm A, Benthin G, Edlund A, Jungerster L, Kieler-Jensen N, Lundin S, Westfelt UN, Peterson AS, Waagstein F: Metabolism and excretion of nitric oxide in humans. Circ Res 72: 1121–1127, 1993Google Scholar
  5. 5.
    Prchal JT, Borgese N, Moore MR, Moreno H, Hegesh E, Hall MK: Congenital methemoglobinemia due to methemoglobin reductase deficiency in two unrelated American black families. Am J Med 89: 516–522, 1990Google Scholar
  6. 6.
    Brewer S, Tralou AR, Alving AS: The toxicity of 8-aminoquinoline antimalarial drugs. Bull Natl Soc Ind Mosq Dis 9: 331–351, 1961Google Scholar
  7. 7.
    Hsiech HS, Jaffe ER: The metabolism of methemoglobin in human erythrocytes. In: D.M.N. Surgenor (ed). The Red Blood Cell. Academic Press II, New York, 1975, pp 799–824Google Scholar
  8. 8.
    Lee CC, Kinter LD, Heiffer MH: Subacute toxicity of primaquine in dogs, monkey an rats. Bull WHO 59: 439–448, 1981Google Scholar
  9. 9.
    Link CM, Theoharides AD, Anders JC, Chung H, Canfield CJ: Structure-activity relationships of putative primaquine metabolites causing methemoglobin formation in canine hemolysates. Toxicol Appl Pharmacol 81: 192–202, 1985Google Scholar
  10. 10.
    Evelyn KA, Malloy NT: Microdetermination of oxyhemoglobin, methemoglobin and suifhemoglobin in a single sample of blood. J Biol Chem 126: 655–661, 1938Google Scholar
  11. 11.
    Hegesh E, Calmanovici N, Avron M: New method for determination ferrihemoglobin (methemoglobin) reductase in erythrocytes. J Lab Clin Med 72: 339–349, 1968Google Scholar
  12. 12.
    Lowry OH, Rosebrough MJ, Farr AL, Randall RJ: Protein measurement with folin-phenol reagent. J Biol Chem 193: 265–275, 1951Google Scholar
  13. 13.
    Davis BJ: Disc electrophoresis II. Method and application of serum proteins. Science 121: 407–427, 1964Google Scholar
  14. 14.
    Kaplan JC, Beulter E: Electrophoresis of red cell NADH and NADPH diaphorases in normal subjects and patients with congenital methemoglobinemia. Biochem Biophys Res Commun 29: 605–610, 1967Google Scholar
  15. 15.
    Gotileb A, Nordan UZ, Hegesh E: An enzyme variation in case of congenital methemoglobinemia. Isr J Med Sci 9: 909–913, 1973Google Scholar
  16. 16.
    Hioki A, Ohtomo H: Influence of methemoglobinemia on the blood oxygen supply in mice infected with Plasmodium berghei. Acta Scholar Med Univ 34: 1215–1222, 1986Google Scholar
  17. 17.
    Srivastava S, Alhomida AS, Siddiqi NJ: Studies on erythrocytic methemoglobin reductase systems in Plasmodium yoelii nigeriensis infected mice. In Vivo 14: 547–550, 2000Google Scholar
  18. 18.
    Srivastava S, Alhomida AS, Siddiqi NJ, Pandey VC: Changes in rodent-erythrocyte methemoglobin reductase system produced by two malaria parasite viz., Plasmodium yoelli nigeriensis and Plasmodium berghei. Comp Biochem Physiol 129: 725–731, 2001Google Scholar
  19. 19.
    Wyman JF, Gray BH, Lee LH, Coleman J, Flemming C, Uddin DE: Interspecies variability in propylene glycol dinitrate-induced methemoglobin formation. Toxicol Appl Pharmacol 81: 203–213, 1985Google Scholar
  20. 20.
    Arnold J, Alving AS, Hockwald RS, Clayman CB, Dern RJ, Beutler E, Flagnan CL, Jeffery GM: The antimalarial action of primaquine against the blood and tissue stages of falciparum malaria Panama, (PF-6 strain). J Lab Clin Med 43: 391–397, 1955Google Scholar
  21. 21.
    Clayman CB, Arnold J, Hockwold RS, Yount EH, Edgecomb JH, Alving AS: Toxicity of primaquine in Caucasians. JAMA 149: 1563–1568, 1952Google Scholar
  22. 22.
    Schwartz JM, Jaffe ER: Heriditary methemoglobinemia with deficiency of NADH dehydrogenase. In J.B. Stanbury, J.B. Wyngaarden, D.S. Fredrickson (eds). The Metabolic Basis of Inherited Diseases. McGraw Hill, New York, 1978, pp 1430–1435Google Scholar
  23. 23.
    Vasquez-Vivar J, Augusto O: Oxidative activity of primaquine metabolites on rat erythrocytes in vitro and in vivo. Biochem Pharmacol 47: 309–316, 1994Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S. Srivastava
  • A.S. Alhomida
  • N.J. Siddiqi
  • S.K. Puri
  • V.C. Pandey

There are no affiliations available

Personalised recommendations