Plant Molecular Biology

, Volume 48, Issue 5–6, pp 729–740 | Cite as

Trends in comparative genetics and their potential impacts on wheat and barley research

  • David A. Laurie
  • Katrien M. Devos


We review some general points about comparative mapping, the evolution of gene families and recent advances in the understanding of angiosperm phylogeny. These are considered in relation to studies of large-genome cereals, particularly barley (Hordeum vulgare) and wheat (Triticum aestivum), with reference to methods of gene isolation. The relative merits of direct map-based cloning in barley and wheat, utilization of the smaller genome of rice (Oryza sativa) and gene homology methods that utilize information from model species such as Arabidopsis thaliana are briefly discussed.

barley (Hordeum vulgarecomparative genetics comparative mapping wheat (Triticum aestivum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R. and Walbot, V. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10: 1135-1149.Google Scholar
  2. Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., de Pouplana, L.R., Martinez-Castilla, L. and Yanofsky, M.F. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 97: 5328-5333.Google Scholar
  3. Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. 2000. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5: 569-579.Google Scholar
  4. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-813.Google Scholar
  5. Barak, S., Tobin, E.M., Andronis, C., Sugano, S. and Green, R.M. 2000. All in good time: the Arabidopsis circadian clock. Trends Plant Sci. 5: 517-522.Google Scholar
  6. Becker, A., Winter, K.U., Meyer, B., Saedler, H. and Theissen, G. 2000. MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17: 1425-1434.Google Scholar
  7. Bhattacharya, D., Aubry, J., Twait, E.C. and Jurk, S. 2000. Actin gene duplication and the evolution of morphological complexity in land plants. J. Phycol. 36: 813-820.Google Scholar
  8. Blanc, G., Barakat, A., Guyot, R., Cooke, R. and Delseny, I. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093-1101.Google Scholar
  9. Blázquez, M.A. 2000. Flower development pathways. J. Cell Sci. 113: 3547-3548.Google Scholar
  10. Blázquez, M.A. and Weigel, D. 2000. Integration of floral inductive signals in Arabidopsis. Nature 404: 889-892.Google Scholar
  11. Bowman, J.L. 1997. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J. Biosci. 22: 515-527.Google Scholar
  12. Burt, D.W., Bruley, C., Dunn, I.C., Jones, C.T., Ramage, A., Law, A.S., Morrice, D.R., Paton, I.R., Smith, J., Windsor, D., Sazanov, A., Fries, R. and Waddington, D. 1999. The dynamics of chromosome evolution in birds and mammals. Nature 402: 411-413.Google Scholar
  13. Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Töpsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705.Google Scholar
  14. Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. 1990. FLORICAULA: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.Google Scholar
  15. Devos, K.M. and Gale, M.D. 2000. Genome relationships: the grass model in current research. Plant Cell 12: 637-646.Google Scholar
  16. Devos, K.M., Beales, J., Nagamura, Y. and Sasaki, T. 1999. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res. 9: 825-829.Google Scholar
  17. Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A. and Benfey, P.N. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86: 423-433.Google Scholar
  18. Dubcovsky, J., Lijavetzky, D., Appendino, L. and Tranquilli, G. 1998. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 97: 968-975.Google Scholar
  19. Ellis, J., Dodds, P. and Pryor, T. 2000. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3: 278-284.Google Scholar
  20. Gale, M.D. and Devos, K.M. 1997. Plant comparative mapping after 10 years. Science 282: 656-659.Google Scholar
  21. Galiba, G., Quarrie, S.A., Sutka, J., Morgounov, A. and Snape, J.W. 1995. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor. Appl. Genet. 90: 1174-1179.Google Scholar
  22. Gutierrez-Cortines, M.E. and Davies, B. 2000. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci. 5: 471-476.Google Scholar
  23. Hasebe, M. 1999. Evolution of reproductive organs in land plants. J. Plant Res. 112: 463-474.Google Scholar
  24. Hirochika, H. 1997. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35: 231-240.Google Scholar
  25. Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A. and Ellis, N. 1997. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7: 581-587.Google Scholar
  26. Holland, P.W.H. 1999. Gene duplication: Past, present and future. Semin. Cell Dev. Biol. 10: 541-547.Google Scholar
  27. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M. and Yamaguchi, J. 2001. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the heightregulating gene GAI/RGA/RHT/D8. Plant Cell 13: 999-1010.Google Scholar
  28. Inagaki, Y. and Doolittle, W.F. 2000. Evolution of the eukaryotic translation termination system: origins of release factors. Mol. Biol. Evol. 17: 882-889.Google Scholar
  29. Jackson, S.A., Cheng, Z.K., Wang, M.L., Goodman, H.M. and Jiang, J.M. 2000. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156: 833-838.Google Scholar
  30. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C. 2000. Molecular analysis of FRIGIDA, amajor determinant of natural variation in Arabidopsis flowering time. Science 290: 344-347.Google Scholar
  31. Keller, B. and Feuillet, C. 2000. Colinearity and gene density in grass genomes. Trends Plant Sci. 5: 246-251.Google Scholar
  32. Kellogg, E.A. 1998. Relationships of cereal crops and other grasses. Proc. Natl. Acad. Sci. USA 95: 2005-2010.Google Scholar
  33. Kramer, E.M. and Irish, V.F. 1999. Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148.Google Scholar
  34. Kramer, E.M., Dorit, R.L. and Irish, V.F. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783.Google Scholar
  35. Krogan, N.T. and Ashton, N.W. 2000. Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues. New Phytol. 147: 505-517.Google Scholar
  36. Ku, H.M., Vision, T., Liu, J.P. and Tanksley, S.D. 2000. Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97: 9121-9126.Google Scholar
  37. Kuzoff, R.K. and Gasser, C.S. 2000. Recent progress in reconstructing angiosperm phylogeny. Trends Plant Sci. 5: 330-336.Google Scholar
  38. Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. 2000. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41: 710-718.Google Scholar
  39. Lagercrantz, U. and Axelsson, T. 2000. Rapid evolution of the family of CONSTANS like genes in plants. Mol. Biol. Evol. 17: 1499-1507.Google Scholar
  40. Laurie, D.A., Pratchett, N., Bezant, J.H. and Snape, J.W. 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38: 575-585.Google Scholar
  41. Lawton-Rauh, A.L., Alvarez-Buylla, E.R. and Purugganan, M.D. 2000. Molecular evolution of flower development. Trends Ecol. Evol. 15: 144-149.Google Scholar
  42. Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M. and Lee, I. 2000. The AGAMOUS-like 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14: 2366-2376.Google Scholar
  43. Leister, D., Kurth, J., Laurie, D.A., Yano, M., Sasaki, T., Devos, K., Graner, A. and Schulze-Lefert, P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95: 370-375.Google Scholar
  44. Lim, J., Helariutta, Y., Specht, C.D., Jung, J., Sims, L., Bruce, W.B., Diehn, S. and Benfey, P.N. 2000. Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 12: 1307-1318.Google Scholar
  45. Lijavetzky, D., Muzzi, G., Wicker, T., Keller, B., Wing, R. and Dubcovsky, J. 1999. Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42: 1176-1182.Google Scholar
  46. Mathews, S. and Donoghue, M.J. 2000. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947-950.Google Scholar
  47. Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F. and Schmidt, R.J. 1996. Diversification of C-function activity in maize flower development. Science 274: 1537-1540.Google Scholar
  48. Michaels, S.D. and Amasino, R.M. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956.Google Scholar
  49. Moore, G., Devos, K.M., Wang, Z. and Gale, M.D. 1995. Grasses, line up and form a circle. Curr. Biol. 5: 737-739.Google Scholar
  50. Moullet, O., Zhang, H.B. and Lagudah, E.S. 1999. Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor. Appl. Genet. 99: 305-313.Google Scholar
  51. Mouradov, A., Hamdorf, B., Teasdale, R.D., Kim, J.T., Winter, K.U. and Theissen, G. 1999. A DEF/GLO-like MADS-Box gene from a gymnosperm: Pinus radiata contains an ortholog angiosperm B class floral homeotic genes. Dev. Genet. 25: 245-252.Google Scholar
  52. Ng, M. and Yanofsky, M.F. 2000. Three ways to learn the ABCs. Curr. Opin. Plant Biol. 3: 47-52.Google Scholar
  53. O'Neill, C.M. and Bancroft, I. 2000. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23: 233-243.Google Scholar
  54. Pan, Q.L., Liu, Y.S., Budai-Hadrian, O., Sela, M., Carmel-Goren, L., Zamir, D. and Fluhr, R. 2000. Comparative genetics of nucleotide binding site leucine-rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155: 309-322.Google Scholar
  55. Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X., Elsik, C.G., Jiang, C.X., Katsar, C.S., Lan, T.H., Lin, Y.R., Ming, R.G. and Wright, R.J. 2000. Comparative genomics of plant chromosomes. Plant Cell 12: 1523-1539.Google Scholar
  56. Peng, J.R., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P. and Harberd, N.P. 1997. The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11: 3194-3205.Google Scholar
  57. Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, N.P. 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400: 256-261.Google Scholar
  58. Pichersky, E. and Gang, D.R. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 5: 439-445.Google Scholar
  59. Plaschke, J., Börner, A., Xie, D.X., Koebner, R.M.D., Schlegel, R. and Gale, M.D. 1993. RFLP mapping of genes affecting plant height and growth habit in rye. Theor. Appl. Genet. 85: 1049-1054.Google Scholar
  60. Pletcher, M.T., Roe, B.A., Chen, F., Do, T., Do, A., Malaj, E. and Reeves, R.H. 2000. Chromosome evolution: the junction of mammalian chromosomes in the formation of mouse chromosome 10. Genome Res. 10: 1463-1467.Google Scholar
  61. Puttagunta, R., Gordon, L.A., Meyer, G.E., Kapfhamer, D., Lamerdin, J.E., Kantheti, P., Portman, K.M., Chung, W.K., Jenne, D.E., Olsen, A.S. and Burmeister, M. 2000. Comparative maps of human 19p13.3 and mouse chromosome 10 allow identification of sequences at evolutionary breakpoints. Genome Res. 10: 1369-1380.Google Scholar
  62. Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-858.Google Scholar
  63. Qiu, Y.L., Lee, J.H., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E.A., Chen, Z.D., Savolainen, V. and Chase, M.W. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404-407.Google Scholar
  64. Richter, T.E. and Ronald, P.C. 2000. The evolution of disease resistance genes. Plant Mol. Biol. 42: 195-204.Google Scholar
  65. Samach, A. and Coupland, G. 2000. Time measurement and the control of flowering in plants. BioEssays 22: 38-47.Google Scholar
  66. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.Google Scholar
  67. Sasaki, T. and Burr, B. 2000. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3: 138-141.Google Scholar
  68. Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. 1999. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J. 18: 992-1002.Google Scholar
  69. Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. and Dennis, E.S. 1999. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11: 445-458.Google Scholar
  70. Shirasu, K., Lahaye, T., Tan, M.W., Zhou, F.S., Azevedo, C. and Schulze-Lefert, P. 1999. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signalling in barley and development in C. elegans. Cell 99: 355-366.Google Scholar
  71. Simpson, G.G., Gendall, A.R. and Dean, C. 1999. When to switch to flowering. Annu. Rev. Cell Dev. Biol. 15: 519.Google Scholar
  72. Smith, T.F. 1998. Functional genomics: bioinformatics is ready for the challenge. Trends Genet. 14: 291-293.Google Scholar
  73. Soltis, E.D. and Soltis, P.S. 2000. Contributions of plant molecular systematics to studies of molecular evolution. Plant Mol. Biol. 42: 45-75.Google Scholar
  74. Soltis, P.S., Soltis, D.E. and Chase, M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402-404.Google Scholar
  75. Soltis, D.E., Soltis, P.S., Chase, M.W., Mort, M.E., Albach, D.C., Zanis, M., Savolainen, V., Hahn, W.H., Hoot, S.B., Fay, M.F., Axtell, M., Swensen, S.M., Prince, L.M., Kress, W.J., Nixon, K.C. and Farris, J.S. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381-461.Google Scholar
  76. Song, J., Yamamoto, K., Shomura, A., Itadani, H., Zhong, H.S., Yano, M. and Sasaki, T. 1998. Isolation and mapping of a family of putative zinc-finger protein cDNAs from rice. DNA Res. 30: 95-101.Google Scholar
  77. Stanyon, R., Yang, F., Cavagna, P., O'Brien, P.C.M., Bagga, M., Ferguson-Smith, M.A. and Wienberg, J. 1999. Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet. Cell Genet. 84: 150-155.Google Scholar
  78. Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kreps, J.A. and Kay, S.A. 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768-771.Google Scholar
  79. Sundstrom, J., Carlsbecker, A., Svensson, M.E., Svenson, M., Johanson, U., Theissen, G. and Engstrom, P. 1999. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev. Genet. 25: 253-266.Google Scholar
  80. Svensson, M.E., Johannesson, H. and Engstrom, P. 2000. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Gene 253: 31-43.Google Scholar
  81. Tarchini, R., Biddle, P., Wineland, R., Tingey, S. and Rafalski, A. 2000. The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12: 381-391.Google Scholar
  82. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U. and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.Google Scholar
  83. Van Deynze, A.E., Sorrells, M.E., Park, W.D., Ayres, N.M., Fu, H., Cartinhour, S.W., Paul. E. and McCouch, S.R. 1998. Anchor probes for comparative mapping of grass genera. Theor. Appl. Genet. 97: 356-369.Google Scholar
  84. van Dodeweerd, A.M., Hall, C.R., Bent, E.G., Johnson, S.J., Bevan, M.W. and Bancroft, I. 1999. Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42: 887-892.Google Scholar
  85. Vergara-Silva, F., Martinez-Castilla, L. and Alvarez-Buylla, E.R. 2000. MADS-box genes: Development and evolution of plant body plans. J. Phycol. 36: 803-812.Google Scholar
  86. Vision, T.J., Brown, D.G. and Tanksley, S.D. 2000. The origins of genomic duplications in Arabidopsis. Science 290: 2114-2117.Google Scholar
  87. Wendel, J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225-249.Google Scholar
  88. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y. and Sasaki, T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2483.Google Scholar
  89. Yu, Y., Tomkins, J.P., Waugh, R., Frisch, D.A., Kudrna, D., Kleinhofs, A., Brueggeman, R.S., Muehlbauer, G.J., Wise, R.P. and Wing, R.A. 2000. A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 101: 1093-1099.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David A. Laurie
    • 1
  • Katrien M. Devos
    • 1
  1. 1.John Innes CentreNorwichUK

Personalised recommendations