Journal of Behavioral Medicine

, Volume 25, Issue 2, pp 175–193 | Cite as

The PedsQLTM 4.0 Generic Core Scales: Sensitivity, Responsiveness, and Impact on Clinical Decision-Making

  • James W. Varni
  • Michael Seid
  • Tara Smith Knight
  • Karen Uzark
  • Ilona S. Szer
Article

Abstract

The PedsQLTM 4.0 (Pediatric Quality of Life InventoryTM) Generic Core Scales are child self-report and parent proxy-report scales developed to measure health-related quality of life (HRQOL) in children and adolescents ages 2–18. The PedsQLTM 4.0 Generic Core Scales consist of 23 items applicable for healthy school and community populations and pediatric populations with acute and chronic health conditions. The 4 PedsQLTM 4.0 Generic Core Scales (Physical, Emotional, Social, School) were administered to 209 children and 269 parents (289 subjects accrued overall) recruited from pediatric cardiology, orthopedics, and rheumatology clinics. Sensitivity, responsiveness, and the impact on clinical decision-making were determined. The PedsQLTM was differentially sensitive to increasing degrees of cardiac disease severity in the cardiology clinic setting and responsive to clinical change over time in the pediatric orthopedics clinic setting. In the pediatric rheumatology clinic setting, the PedsQLTM demonstrated an impact on clinical decision-making, resulting in subsequent increases in HRQOL.

health-related quality of life pediatrics children cardiology orthopedics rheumatology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Achenbach, T. M., McConaughy, S. H., and Howell, C.T. (1987). Child/adolescent behavioral and emotional problems: Implications of cross-informant correlations for situational specificity. Psychol. Bull. 101: 213–232.Google Scholar
  2. Adams, W. G., Conners, W. P., Mann, A. D., and Palfrey, S. (2000). Immunization entry at the point of service improves quality, saves time, and is well-accepted. Pediatrics 106: 489–492.Google Scholar
  3. Calkins, D. R., Rubenstein, L. V., Cleary, P. D., Davies, A. R., Jette, A. M., Fink, A., Kosecoff, J., Young, R. T., Brook, R. H., and Delbanco, T. L. (1991). Failure of physicians to recognize functional disability in ambulatory patients. Ann. Intern. Med. 114: 451–454.Google Scholar
  4. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Erlbaum, Hillsdale, NJ.Google Scholar
  5. Costello, E. J., Edelbrock, C., Costello, A. J., Dulcan, M. K., Burns, B. J., and Brent, D. (1988). Psychopathology in pediatric primary care: The new hidden morbidity. Pediatrics 82: 415–424.Google Scholar
  6. Czyzewski, D. I., Mariotto, M. J., Bartholomew, K., LeCompte, S. H., and Sockrider, M. M. (1994). Measurement of quality of well being in a child and adolescent cystic fibrosis population. Med. Care 32: 965–972.Google Scholar
  7. Fairclough, D. L., and Cella, D. F. (1996). Functional Assessment of Cancer Therapy (FACT-G): Non-response to individual questions. Qual. Life Res. 5: 321–329.Google Scholar
  8. Fayers, P. M., and Machin, D. (2000). Quality of Life: Assessment, Analysis, and Interpretation, Wiley, New York.Google Scholar
  9. Guyatt, G., Feeny, D., and Patrick, D. (1991). Issues of quality-of-life measurement in clinical trials. Control. Clin. Trials 12: 81S–90S.Google Scholar
  10. Guyatt, G. H., Juniper, E. F., Griffith, L. E., Feeny, D. H., and Ferry, P. J. (1997). Children and adult perceptions of childhood asthma. Pediatrics 99: 165–168.Google Scholar
  11. Higginson, I., and Carr, A. (2001). Using quality of life measures in the clinical setting. Br. Med. J. 322: 1297–1300.Google Scholar
  12. Hollingshead, A. B. (1975). Four Factor Index of Social Status, Yale University, New Haven, CT.Google Scholar
  13. Konstam, V., Salem, D., and Pauleur, H. (1996). Baseline quality of life as a predictor of mortality and hospitalization in 5,025 patients with congestive heart failure. Am. J. Cardiol. 78: 890–895. 192 Varni, Seid, Knight, Uzark, and SzerGoogle Scholar
  14. Langeveld, J. H., Koot, H. M., Loonen, M. C. B., Hazebroek-Kampschreur, A. A. J. M., and Passchier, J. (1996). A quality of life instrument for adolescents with chronic headache. Cephalalgia 16: 183–196.Google Scholar
  15. Nunnally, J. C., and Bernstein, I. R. (1994). Psychometric Theory, 3rd ed. McGraw-Hill, New York.Google Scholar
  16. Pedhazur, E. J., and Schmelkin, L. P. (1991). Measurement, Design, and Analysis: An Integrated Approach, Erlbaum, Hillsdale, NJ.Google Scholar
  17. Rubenstein, L. V., Calkins, D. R., Young, R. T., Cleary, P. D., Fink, A., Kosecoff, J., Jette, A. M., Davies, A. R., Delbanco, T. L., and Brook, R. H. (1989). Improving patient function: A randomized trial of functional disability screening. Ann. Intern. Med. 111: 836–842.Google Scholar
  18. Rubenstein, L. V., McCoy, J. M., Cope, D. W., Barrett, P. A., Hirsch, S. H., Messer, K. S., and Young, R. T. (1995). Improving patient quality of life with feedback to physicians about functional status. J. Gen. Intern. Med. 10: 607–614.Google Scholar
  19. Seid, M., Varni, J. W., Bermudez, L. O., Zivkovic, M., Far, M. D., Nelson, M., and Kurtin, P. S. (2001). Parent's Perceptions of Primary Care (P3C): Measuring parent's experiences of pediatric primary care quality. Pediatrics 108: 264–270.Google Scholar
  20. Smith, K.W., Avis, N. E., and Assmann, S. F. (1999). Distinguishing between quality of life and health status in quality of life research: A meta-analysis. Qual. Life Res. 8: 447–459.Google Scholar
  21. Spilker, B. (1996). Quality of Life and Pharmacoeconomics in ClinicalTrials, 2nd ed., Lippincott-Raven, Philadelphia.Google Scholar
  22. SPSS (1998). SPSS 8.0 for Windows, SPSS, Chicago.Google Scholar
  23. Thompson, K. L., and Varni, J. W. (1986). A developmental cognitive-biobehavioral approach to pediatric pain assessment. Pain 25: 282–296.Google Scholar
  24. Varni, J. W., and Setoguchi, Y. (1992). Screening for behavioral and emotional problems in children and adolescents with congenital or acquired limb deficiencies. Am. J. Dis. Child. 146: 103–107.Google Scholar
  25. Varni, J. W., Thompson, K. L., and Hanson, V. (1987). The Varni/Thompson Pediatric Pain Questionnaire: I. Chronic musculoskeletal pain in juvenile rheumatoid arthritis. Pain 28: 27–38.Google Scholar
  26. Varni, J. W., Wilcox, K. T., Hanson, V., and Brik, R. (1988). Chronic musculoskeletal pain and functional status in juvenile rheumatoid arthritis: An empirical model. Pain 32: 1–7.Google Scholar
  27. Varni, J. W., Katz, E. R., Colegrove, R., and Dolgin, M. (1995). Adjustment of children with newly diagnosed cancer: Cross-informant variance. J. Psychosoc. Oncol. 13: 23–38.Google Scholar
  28. Varni, J. W., Rapoff, M. A., Waldron, S. A., Gragg, R. A., Bernstein, B. H., and Lindsley, C. B. (1996a). Chronic pain and emotional distress in children and adolescents. J. Dev. Behav. Pediatr. 17: 154–161.Google Scholar
  29. Varni, J. W., Waldron, S. A., Gragg, R. A., Rapoff, M. A., Bernstein, B. H., Lindsley, C. B., and Newcomb, M. D. (1996b). Development of the Waldron/Varni Pediatric Pain Coping Inventory. Pain 67: 141–150.Google Scholar
  30. Varni, J. W., Katz, E. R., Seid, M., Quiggins, D. J. L., and Friedman-Bender, A. (1998a). The Pediatric Cancer Quality of Life Inventory-32 (PCQL-32): I. Reliability and validity. Cancer 82: 1184–1196.Google Scholar
  31. Varni, J. W., Katz, E. R., Seid, M., Quiggins, D. J. L., Friedman-Bender, A., and Castro, C. M. (1998b). The Pediatric Cancer Quality of Life Inventory (PCQL): I. Instrument development, descriptive statistics, and cross-informant variance. J. Behav. Med. 21: 179–204.Google Scholar
  32. Varni, J. W., Rode, C. A., Seid, M., Katz, E. R., Friedman-Bender, A., and Quiggins, D. J. L. (1999a). The Pediatric Cancer Quality of Life Inventory-32 (PCQL-32): II. Feasibility and range of measurement. J. Behav. Med. 22: 397–406.Google Scholar
  33. Varni, J.W., Seid, M., and Kurtin, P. S. (1999b). Pediatric health-related quality of life measurement technology: A guide for health care decision makers. J. Clin. Outcomes Manage. 6: 33–40.Google Scholar
  34. Varni, J. W., Seid, M., and Rode, C. A. (1999c). The PedsQLTM: Measurement model for the Pediatric Quality of Life InventoryTM. Med. Care 37: 126–139.Google Scholar
  35. Varni, J. W., Seid, M., Knight, T. S., Burwinkle, T. M., Brown, J., and Szer, I. S. (in press). The PedsQLTM in pediatric rheumatology: Reliability, validity, and responsiveness of the Pediatric Quality of Life InventoryTM Generic Core Scales and Rheumatology Module. Arthritis and Rheumatism.Google Scholar
  36. Varni, J. W., Seid, M., and Kurtin, P. S. (2001). The PedsQL 4.0TM: Reliability and validity of the Pediatric Quality of Life InventoryTM Version 4.0 Generic Core Scales in healthy and patient populations. Med. Care 39: 800–812.Google Scholar
  37. Wallander, J. L., and Varni, J.W. (1998). Effects of pediatric chronic physical disorders on child and family adjustment. J. Child Psychol. Psychiatry 39: 29–46.Google Scholar
  38. Wetzler, H. P. (2000). The future of health status assessment. Am. J. Managed Care 6: 121–123.Google Scholar
  39. World Health Organization (1948). Constitution of theWorld Health Organization Basic Document, World Health Organization, Geneva, Switzerland.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • James W. Varni
    • 1
    • 2
  • Michael Seid
    • 1
  • Tara Smith Knight
    • 1
  • Karen Uzark
    • 3
  • Ilona S. Szer
    • 4
    • 5
  1. 1.Center for Child Health OutcomesChildren's Hospital and Health CenterSan Diego
  2. 2.Department of PsychiatryUniversity of CaliforniaSan Diego, School of Medicine
  3. 3.Children's Heart InstituteChildren's Hospital and Health CenterSan Diego
  4. 4.Division of Pediatric RheumatologyChildren's Hospital and Health CenterSan Diego
  5. 5.Department of PediatricsUniversity of CaliforniaSan Diego, School of Medicine

Personalised recommendations