Advertisement

Lithology and Mineral Resources

, Volume 37, Issue 2, pp 186–193 | Cite as

New Data on the Composition of Magnetic Minerals from Paleosols of Southern Tajikistan

  • A. E. Dodonov
  • A. I. Gorshkov
  • N. V. Verkhovtseva
  • A. V. Sivtsov
  • L. P. Zhou
Article

Abstract

A dependence of the magnetic susceptibility (κ) on the alternation of paleosol and loess has been revealed for loess sections of southern Tajikistan: the κ value increases in paleosols and decreases in loesses. The magnetic signal intensification in the paleosol is caused by an elevated content of ferromagnetics. New electron-microscopic data on magnetic minerals from the paleosol have demonstrated that the principal ferromagnetic responsible for high κ values of the paleosol is biogenic fine-dispersed magnetite. Its particles vary from 0.0n to 0.n μm in size and exhibit crystallochemical characteristics typical for this mineral. Under pedogenetic conditions and participation of Fe-reducing bacteria, the activity of biomineralization is controlled by paleoclimatic variations.

Keywords

Magnetic Susceptibility Sedimentology Magnetic Mineral Signal Intensification Magnetic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Babanin, V.F., Trukhin, V.I., Karpachevskii, L.O., Ivanov, A.V., and Morozov, V.V., Magnetizm pochv (Magnetism of Soils), Yaroslavl: Yaroslavskii Gos. Tekhn. Univ., 1995.Google Scholar
  2. Beget, J.E. and Hawkins, D.B., Influence of Orbital Parameters on Pleistocene Loess Deposition in Central Alaska, Nature (London), 1989, vol. 317, pp. 151–153.Google Scholar
  3. Bell, P.E., Mills, A.L., and Hermann, S., Biogeochemical Conditions Favoring Magnetite Formations during Anaerobic Iron Reduction, Appl. Environ. Microbiol., 1987, vol. 53, no. 11, pp. 2610–2616.Google Scholar
  4. Bol'shakov, V.A., Ispol'zovanie metodov magnetizma gornykh porod pri izuchenii noveishikh otlozhenii (The Use of Methods of Rock Magnetism in the Study of Recent Sediments), Moscow: GEOS, 1996.Google Scholar
  5. Bronger, A., Winter, R., and Heinkele, T., Pleistocene Climatic History of East and Central Asia Based on Paleopedological Indicators in Loess-Paleosol Sequences, Catena, 1998, vol. 34, pp. 1–17.Google Scholar
  6. Chlakula, J., Loess-Palaeosol Stratigraphy in the Yenisey Basin, Southern Siberia. Sbornik Geologickych Ved. Antropozoikum. 23, Czech Geol. Survey, Prague, 1999, pp. 55-70.Google Scholar
  7. Dodonov, A.E., Shackleton, N., Zhou, L.P., Lomov, S.P., and Finaev, A.F., Quaternary Loess-Soil Stratigraphy in Central Asia: Geochronology, Correlation, and Evolution Paleoenvironment, Stratigr. Geol. Korrelyatsiya, 1999, vol. 7, no. 6, pp. 66–80.Google Scholar
  8. Fassbinder, J.W.E., Stanjek, H., and Vali, H., Occurrence of Magnetic Bacteria in Soil, Nature (London), 1990, vol. 343, pp. 161–163.Google Scholar
  9. Forster, Th. and Heller, F., Loess Deposits from the Tajik Depression (Central Asia): Magnetic Properties and Paleoclimate, Earth Planet. Sci. Lett., 1994, vol. 128, pp. 501–512.Google Scholar
  10. Hanesch, M. and Peterson, N., Magnetic Properties of Parabrown-Earth from Southern Germany, Earth Planet. Sci. Lett., 1999, vol. 169, pp. 85–97.Google Scholar
  11. Heller, F. and Evans, M.E., Loess Magnetism, Rev. Geophys., 1995, vol. 32, no. 2, pp. 211–240.Google Scholar
  12. Heller, F., Liu, X.M., Liu, T.S., and Xu, T.C., Magnetic Susceptibility of Loess in China, Earth Planet. Sci. Lett., 1991, vol. 103, pp. 301–310.Google Scholar
  13. Heller, F., Meili, B., Wang, J., Li, H., and Liu, T.S., Magnetization and Sedimentation History of Loess in the Central Loess Plateau of China, Aspects of Loess Research, Beijing: China Ocean Press, 1987, pp. 147–163.Google Scholar
  14. Hus, J.J. and Han, J., The Contribution of Loess Magnetism in China to the Retrieval of Past Global Changes: Some Problems, Phys. Earth Planet. Int., 1992, vol. 70, pp. 154–168.Google Scholar
  15. Kazanskii, A.Yu., Kravchinskii, V.A., Zykina, V.S., Mamasova, G.G., and Metelkin, D.V., Potentials of Magnetic Methods for Detecting Climatic Signal from Loess-Soil Sequences in Siberia, Problemy rekonstruktsii klimata i prirodnoi sredy golotsena i pleistotsena Sibiri (Problems of Reconstruction of the Holocene and Pleistocene Climate and Environment in Siberia), Novosibirsk: Inst. Arkheol. Etnografii, 1998, pp. 191–202.Google Scholar
  16. Kukla, G., Loess Stratigraphy in Central China, Quat. Sci. Rev., 1987, vol. 6, pp. 191–219.Google Scholar
  17. Kukla, G. and An, Z., Loess Stratigraphy in Central China, Palaeogeogr., Palaeoclimat., Palaeoecol., 1989, vol. 72, pp. 203–225.Google Scholar
  18. Kukla, G., Heller, F., Liu, X.M., Xu, T.C., Liu, T.S., and An, Z.S., Pleistocene Climates in China Dated by Magnetic Susceptibility, Geology, 1988, vol. 16, pp. 811–814.Google Scholar
  19. Lomov, S.P. and Pen'kov, A.V., Magnetic Susceptibility of Some Recent and Fossil Soils in Tadjikistan, Pochvovedenie, 1979, no. 6, pp. 100-109.Google Scholar
  20. Lomov, S.P., Sosin, P.M., and Sosonovskaya, V.P., Structure and Material Composition of Buried Soils in Tadjikistan, Pochvovedenie, 1982, no. 1, pp. 18-30.Google Scholar
  21. Lovley, D.R., Magnetite Formation during Microbial Dissimilatory Iron Reduction, Iron Biominerals, Frankel, R.B. and Blakemore, R.P., Eds., New York: Plenum, 1990, pp. 151–166.Google Scholar
  22. Lovley, D.R., Microbial Fe (III) Reduction in Subsurface Environments, FEMS Microbiol. Rev., 1997, vol. 20, pp. 305–313.Google Scholar
  23. Lovley, D.R. and Phillips, E.J.P., Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese, Appl. Environ. Microbiol., 1988, vol. 54, no. 6, pp. 1472–1480.Google Scholar
  24. Lovley, D.R., Stolz, J.F., Nord, G.L., et al., Anaerobic Production of Magnetite by a Dissimilatory Iron-Reducing Microorganism, Nature (London), 1987, vol. 330, pp. 252–254.Google Scholar
  25. Maher, B.A., Magnetic Properties of Modern Soils and Quaternary Loessic Paleosols: Paleomagnetic Implications, Palaeogeogr., Palaeoclimat., Palaeoecol., 1998, vol. 137, pp. 25–54.Google Scholar
  26. Maher, B.A. and Taylor, R.M., Formation of Ultrafine-Grained Magnetite in Soils, Nature (London), 1988, vol. 336, pp. 368–370.Google Scholar
  27. Maher, B.A. and Thompson, R., Mineral Magnetic Record of the Chinese Loess and Paleosols, Geology, 1991, vol. 19, pp. 3–6.Google Scholar
  28. Mestdagh, H., Haesaerts, P., Dodonov, A., and Hus, J., Pedosedimentary and Climatic Reconstruction of the Last Interglacial and Early Glacial Loess-Paleosol Sequence in South Tadjikistan, Catena, 1999, vol. 35, pp. 197–218.Google Scholar
  29. Petersen, N., Dobenec, T., and Vali, H., Fossil Bacterial Magnetite in Deep-Sea Sediments From the South Atlantic Ocean, Nature (London), 1986, vol. 320, pp. 611–615.Google Scholar
  30. Shackleton, N.J., An, Z., Dodonov, A.E., Gavin, J., Kukla, G.J., Ranov, V.A., and Zhou, L.P., Accumulation Rate of Loess in Tadjikistan and China: Relationship with Global Ice Volume Cycles, Quat. Proc., 1995, no. 4, pp. 1-6.Google Scholar
  31. Stanjek, H., Fassbinder, J.W.E., Vali, H., Wagele, H., and Graf, W., Evidence of Biogenic Greigite (Ferrimagnetic Fe3S4) in Soil, Eur. J. Soil Sci., 1994, vol. 45, pp. 97–104.Google Scholar
  32. Vadyunina, A.F. and Babanin, V.F., Magnetic Susceptibility of Some Soils in the Soviet Union, Pochvovedenie, 1972, no. 10, pp. 55-66.Google Scholar
  33. Vadyunina, A.F., Babanin, V.F., and Kovtun, V.Ya., Magnetic Susceptibility of the Mechanical Element Fraction from Some Soils, Pochvovedenie, 1974, no. 1, pp. 116-120.Google Scholar
  34. Virina, E.I. and Faustov, S.S., The Reflection of Cyclicity in the Structure of Loess-Soil Sequences in Their Magnetic Susceptibility, Inzhenerno-geologicheskie osobennosti tsiklichnosti lessov (Engineering-Geological Features of the Loess Cyclicity), Moscow: Nauka, 1987, pp. 27–31.Google Scholar
  35. Virina, E.I., Faustov, S.S., and Heller, F., Magnetic Climate Record in the Loess-Soil Sequence of the Russian Plain, Problemy paleogeografii i stratigrafii pleistotsena (Problems of the Pleistocene Paleogeography and Stratigraphy), Moscow: Mosk. Gos. Univ., 2000, pp. 259–279.Google Scholar
  36. Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., and Wang, J.T., Partly Pedogenic Origin of Magnetic Variations in Chinese Loess, Nature (London), 1990, vol. 346, pp. 737–739.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • A. E. Dodonov
    • 1
  • A. I. Gorshkov
    • 2
  • N. V. Verkhovtseva
    • 3
  • A. V. Sivtsov
    • 2
  • L. P. Zhou
    • 4
  1. 1.Geological Institute (GIN)Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  3. 3.Pedological FacultyMoscow State University (MGU)Vorob'evy gory, MoscowRussia
  4. 4.Peking UniversityPekingChina

Personalised recommendations