Advertisement

Plant Molecular Biology

, Volume 48, Issue 5–6, pp 483–499 | Cite as

A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers

  • M.A. Menz
  • R.R. Klein
  • J.E. Mullet
  • J.A. Obert
  • N.C. Unruh
  • P.E. Klein
Article

Abstract

Using AFLP technology and a recombinant inbred line population derived from the sorghum cross of BTx623 × IS3620C, a high-density genetic map of the sorghum genome was constructed. The 1713 cM map encompassed 2926 loci distributed on ten linkage groups; 2454 of those loci are AFLP products generated from either the EcoRI/MseI or PstI/MseI enzyme combinations. Among the non-AFLP markers, 136 are SSRs previously mapped in sorghum, and 203 are cDNA and genomic clones from rice, barley, oat, and maize. This latter group of markers has been mapped in various grass species and, as such, can serve as reference markers in comparative mapping. Of the nearly 3000 markers mapped, 692 comprised a LOD ≥3.0 framework map on which the remaining markers were placed with lower resolution (LOD <3.0). By comparing the map positions of the common grass markers in all sorghum maps reported to date, it was determined that these reference markers were essentially collinear in all published maps. Some clustering of the EcoRI/MseI AFLP markers was observed, possibly in centromeric regions. In general, however, the AFLP markers filled most of the gaps left by the RFLP/SSR markers demonstrating that AFLP technology is effective in providing excellent genome coverage. A web site, http://SorghumGenome.tamu.edu, has been created to provide all the necessary information to facilitate the use of this map and the 2590 PCR-based markers. Finally, we discuss how the information contained in this map is being integrated into a sorghum physical map for map-based gene isolation, comparative genome analysis, and as a source of sequence-ready clones for genome sequencing projects.

AFLP® RFLP SSR markers sorghum genetic map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Blanco, C., Peeter, A.J.M., Koornneef, M., Lister, C., Dean, C., van den Bosch, N., Pot, J. and Kuiper, M.T.R. 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 14: 259-271.Google Scholar
  2. Arumuganathan, K. and Earle, E.D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208-218.Google Scholar
  3. Becker, J., Vos, P., Kuiper, M., Salamini, F. and Heun, M. 1995. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 249: 65-73.Google Scholar
  4. Bhattramakki, D., Dong, J., Chhabra, A.K. and Hart, G. 2000. An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43: 988-1002.Google Scholar
  5. Boivin, K., Deu, M., Rami, J-F., Trouche, G. and Hamon, P. 1999. Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl. Genet. 98: 320-328.Google Scholar
  6. Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C. and Stuber, C.W. 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519-526.Google Scholar
  7. Burr, B., Burr, F.A. and Matz, E.C. 1993. Mapping genes with recombinant inbreds. In: M. Freeling and V. Walbot (Eds.) The Maize Handbook, Springer-Verlag, New York, pp. 249-254.Google Scholar
  8. Childs, K.L., Miller, F.R., Cordonnier-Pratt, M.M., Pratt, L.H., Morgan, P.W. and Mullet, J.E. 1997. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol. 113: 611-619.Google Scholar
  9. Childs, K.L., Klein, R.R., Klein, P.E., Morishige, D.T. and Mullett, J.E. 2001. Mapping genes on an integrated sorghum genetic and physical map using cDNA selection technology. Plant J. 27: 243-255.Google Scholar
  10. Chittenden, L.M., Schertz, K.F., Lin, Y-R., Wing, R.A. and Paterson, A.H. 1994. A detailed RFLP map of Sorghum bicolor× S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor. Appl. Genet. 87: 925-933.Google Scholar
  11. Doebley, J., Durbin, M., Golenberg, E.M., Clegg, M.T. and Mam D.P. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution 44: 1097-1108.Google Scholar
  12. Doggett, H. 1988. Sorghum, 2nd ed. John Wiley, New York.Google Scholar
  13. Dufour, P., Deu, M., Grivet, L., D'Hont, A., Paulet, F., Bouet, A., Lanaud, C., Glaszmann, J.C. and Hamon, P. 1997. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor. Appl. Genet. 94: 409-418.Google Scholar
  14. Klein, P.E., Klein, R.R., Cartinhour, S.W., Ulanch, P.E., Dong, J., Obert, J.A., Morishige, D.T., Schlueter, S.D., Childs, K.L., Ale, M. and Mullet, J.E. 2000. A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res. 10: 789-807.Google Scholar
  15. Klein, R.R., Klein, P.E., Chhabra, A.K., Dong, J., Pammi, S., Childs, K.L., Mullet, J.E., Rooney, W.L. and Schertz, K.F. 2001a. Molecular mapping of the rf1 gene for pollen fertility restoration in sorghum (Sorghum bicolor L.). Theor. Appl. Genet. 102: 1206-1212.Google Scholar
  16. Klein, R.R., Rodriguez-Herrera, R., Schlueter, J.A., Klein, P.E., Yu, Z.H. and Rooney, W.L. 2001b. Identification of genomic regions that affect grain mold incidence and other traits of agronomic importance in sorghum. Theor. Appl. Genet. 102: 307-319.Google Scholar
  17. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12: 172-175.Google Scholar
  18. Kong, L., Dong, J. and Hart, G.E. 2000. Characteristics, linkagemap positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor. Appl. Genet. 101: 438-448.Google Scholar
  19. Liu, S.-C., Kowalski, S.P., Lan, T.-H., Feldmann, K.A. and Paterson, A.H. 1996. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142: 247-258.Google Scholar
  20. Maheswaran, K., Subudhi, P.K., Nandi, S., Xu, J.C., Parco, A., Yang, D.C. and Huang, N. 1997. Polymorphism, distribution, and segregation of AFLP markers in a double haploid rice population. Theor. Appl. Genet. 94: 39-45.Google Scholar
  21. McClelland, M., Nelson, M. and Raschke, E. 1994. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucl. Acids Res. 22: 3640-3659.Google Scholar
  22. Ming, R., Liu, S.C., da Silva, J., Wilson, W., Braga, D., van Deynze, A., Wenslaff, T,F., Wu, K.K., Moore, P.H., Burnquist, W., Sorrells, M.E., Irvine, J.E. and Paterson, AH. 1998. Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150: 1663-1682.Google Scholar
  23. Paterson, A.H., Schertz, K.F., Lin, Y.-R., Liu, S.-C. and Chang, Y.-L. 1995. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L) Pers. Proc. Natl. Acad. Sci. USA 92: 6127-6131.Google Scholar
  24. Peng, Y., Schertz, K.F., Cartinhour, S. and Hart, G.E. 1999. Comparative genome mapping of Sorghum bicolor (L.)Moench using a RFLP map constructed in a population of recombinant inbred lines. Plant Breed. 118: 225-235.Google Scholar
  25. Pereira, M.G., Lee, M., Bramel-Cox, P., Woodman, W., Doebley, J. and Whitkus, R. 1994. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236-243.Google Scholar
  26. Powell, W., Thomas, W.T.B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J.W. and Waugh, R. 1997. Analysis of quantitative traits in barley by the use of amplified fragments length polymorphisms. Heredity 79: 48-59.Google Scholar
  27. Qi, X., Stam, P. and Lindhout, P. 1998. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor. Appl. Genet. 96: 376-384.Google Scholar
  28. Tao, Y.Z., Jordan, D.R., Henzell, R.G. and McIntyre, C.L. 1998. Construction of a genetic map in a sorghum RIL population using probes from different sources and its comparison with other sorghum maps. Aust. J. Agric. Res. 49: 729-736.Google Scholar
  29. Tao, Y.Z., Henzell, R.G., Jordan, D.R., Butler, D.G., Kelly, A.M. and McIntyre, C.L. 2000. Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor. Appl. Genet. 100: 1225-1232.Google Scholar
  30. Van Deynze, A.E., Sorrells, M.E., Park, W.D., Ayres, N.M., Fu, H., Cartinhour, S.W., Paul, E. and McCouch, S.R. 1998. Anchor probes for comparative mapping of grass genera. Theor. Appl. Genet. 97: 356-369.Google Scholar
  31. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407-4414.Google Scholar
  32. Vuylsteke, M., Mank, R., Antonise, R., Bastiaans, E., Senior, M.L., Stuber, C.W., Melchinger, A.E., Lübberstedt, T., Xia, X.C., Stam, P., Zabeau, M. and Kuiper, M. 1999. Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99: 921-935.Google Scholar
  33. Whitkus, R., Doebley, J. and Lee, M. 1992. Comparative genome mapping of sorghum and maize. Genetics 132: 1119-1130.Google Scholar
  34. Xu, G.-W., Magill, C.W., Schertz, K.F. and Hart, G.E. 1994. A RFLP linkage map of Sorghum bicolor (L)Moench. Theor. Appl. Genet. 89: 139-145.Google Scholar
  35. Young, W.P., Schupp, J.M. and Keim, P. 1999. DNA methylation and AFLP marker distribution in the soybean genome. Theor. Appl. Genet. 99: 785-790.Google Scholar
  36. Zhu, J., Gale, M.D., Quarrie, S., Jackson, M.T., and Bryan, G.J. 1998. AFLP markers for the study of rice biodiversity. Theor. Appl. Genet. 96: 602-611.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M.A. Menz
    • 1
  • R.R. Klein
    • 1
  • J.E. Mullet
    • 2
  • J.A. Obert
    • 3
  • N.C. Unruh
    • 3
  • P.E. Klein
    • 2
  1. 1.USDA-ARS, Southern Plains Agricultural Research CenterCollege StationUSA
  2. 2.Institute for Plant Genomics and Biotechnology, and Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUSA
  3. 3.Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations