Numerical Algorithms

, Volume 29, Issue 1–3, pp 75–96 | Cite as

Block Krylov Subspace Methods for Solving Large Sylvester Equations

  • A. El Guennouni
  • K. Jbilou
  • A.J. Riquet

Abstract

In the present paper, we propose block Krylov subspace methods for solving the Sylvester matrix equation AXXB=C. We first consider the case when A is large and B is of small size. We use block Krylov subspace methods such as the block Arnoldi and the block Lanczos algorithms to compute approximations to the solution of the Sylvester matrix equation. When both matrices are large and the right-hand side matrix is of small rank, we will show how to extract low-rank approximations. We give some theoretical results such as perturbation results and bounds of the norm of the error. Numerical experiments will also be given to show the effectiveness of these block methods.

block Arnoldi block Lanczos block GMRES Krylov subspaces low-rank approximations Sylvester equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z. Bai, D. Day and Q. Ye, ABLE: An adaptive block Lanczos method for non-Hermitian eigenvalue problems, SIAM J. Matrix Anal. Appl. 20(4) (1999) 1060–1082.Google Scholar
  2. [2]
    R.H. Bartels and G.W. Stewart, Algorithm 432: Solution of the matrix equation AX+XB= C, Circ. Systems Signal Process. 13 (1994) 820–826.Google Scholar
  3. [3]
    D.L. Boly, Krylov subspace methods on state-space control models, Comm. ACM 15 (1972) 820–826.Google Scholar
  4. [4]
    F. Chatelin, Valeurs Propres de Matrices (Masson, Paris, 1988).Google Scholar
  5. [5]
    B.N. Datta and K. Datta, Theoretical and computational aspects of some linear algebra problems in control theory, in: Computational and Combinatorial Methods in Systems Theory, eds. C.I. Byrnes and A. Lindquist (Elsevier, Amsterdam, 1986) pp. 201–212.Google Scholar
  6. [6]
    E. de Souza and S.P. Bhattacharyya, Controllability, observability and the solution of AX-XB= C, Linear Algebra Appl. 39 (1981) 167–188.Google Scholar
  7. [7]
    G.H. Golub, S. Nash and C. Van Loan, A Hessenberg-Schur method for the problem AX+XB= C, IEEE Trans. Automat. Control 24 (1979) 909–913.Google Scholar
  8. [8]
    J.Z. Hearon, Nonsingular solutions of TA- BT= C, Linear Algebra Appl. 16 (1997) 57–63.Google Scholar
  9. [9]
    D.Y. Hu and L. Reichel, Krylov subspace methods for the sylvester equation, Linear Algebra Appl. 174 (1992) 283–314.Google Scholar
  10. [10]
    C. Hyland and D. Bernstein, The optimal projection equations for fixed-order dynamic compensation, IEEE Trans. Automat. Control 29 (1984) 1034–1037.Google Scholar
  11. [11]
    I.M. Jaimoukha and E.M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal. 31 (1994) 227–251.Google Scholar
  12. [12]
    K. Jbilou, On Krylov subspace methods for solving the matrix Sylvester equation AX- XB= C, Technical report LMPA (71), Université du Littoral, Calais, France (1998).Google Scholar
  13. [13]
    K. Jbilou and J. Riquet, A nonsymmetric block Lanczos algorithm for eigenvalue problems, submitted.Google Scholar
  14. [14]
    P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic Press, London, 1985).Google Scholar
  15. [15]
    J. Laub, M.T. Heath, C. Paige and R.C. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalisation algorithms, IEEE Trans. Automat. Control 32 (1987) 115–122.Google Scholar
  16. [16]
    C. Moler and C. Van Loan, Ninteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (1978) 801–836.Google Scholar
  17. [17]
    Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, New York, 1995).Google Scholar
  18. [18]
    Y. Saad, Numerical solution of large Lyapunov equations, in: Signal Processing, Scattering, Operator Theory and Numerical Methods, Proc. of the Internat. Symposium MTNS-89, Vol 3, eds. M.A. Kaashoek, J.H. van Schuppen and A.C. Ran (Birkhäuser, Boston, 1990) pp. 503–511.Google Scholar
  19. [19]
    Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.Google Scholar
  20. [20]
    M. Sadkane, Block Arnoldi and Davidson methods for unsymmetric large eigenvalue problems, Numer. Math. 64 (1993) 687–706.Google Scholar
  21. [21]
    V. Simoncini, On the numerical solution of AX- XB= C,BIT 36(4) (1996) 814–830.Google Scholar
  22. [22]
    G.W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15 (1973) 123–136.Google Scholar
  23. [23]
    G.W. Stewart and J.G. Sun, Matrix Perturbation Theory (Academic Press, New York, 1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. El Guennouni
    • 1
  • K. Jbilou
    • 2
  • A.J. Riquet
    • 2
  1. 1.Laboratoire d'analyse numérique et d'Optimisation, Bat. M3Université des sciences et technologies de LilleVilleneuve d'AscqFrance
  2. 2.Université du Littoral, Zone universitaire de la Mi-voix, Batiment H. PoincaréCalais CedexFrance

Personalised recommendations