Theoretical and Mathematical Physics

, Volume 130, Issue 3, pp 323–350 | Cite as

New Relations in the Algebra of the Baxter Q-Operators

  • A. A. Belavin
  • A. V. Odesskii
  • R. A. Usmanov


We consider irreducible cyclic representations of the algebra of monodromy matrices corresponding to the R-matrix of the six-vertex model. At roots of unity, the Baxter Q-operator can be represented as a trace of a tensor product of L-operators corresponding to one of these cyclic representations, and this operator satisfies the TQ equation. We find a new algebraic structure generated by these L-operators and consequently by the Q-operators.


Tensor Product Algebraic Structure Monodromy Matrice Cyclic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. I. Baxter, Ann. Phys., 70, 193, 323 (1972); 76, 48 (1973).Google Scholar
  2. 2.
    R. J. Baxter, J. H. H. Perk, and H. Au-Yang, Phys. Lett. A, 128, 138 (1988).Google Scholar
  3. 3.
    H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M. L. Yan, Phys. Lett. A, 123, 219 (1987).Google Scholar
  4. 4.
    R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Int. J. Mod. Phys. B, 4, 803 (1990).Google Scholar
  5. 5.
    V. V. Bazhanov and Yu. G. Stroganov, J. Stat. Phys., 51, 799 (1990).Google Scholar
  6. 6.
    V. O. Tarasov, Int. J. Mod. Phys. A, 7, 963 (1992).Google Scholar
  7. 7.
    V. Pasquier and M. Gaudin, J. Phys. A, 25, 5243 (1992).Google Scholar
  8. 8.
    V. B. Kuznetsov and E. K. Sklyanin, J. Phys. A, 31, 2241 (1998).Google Scholar
  9. 9.
    E. K. Sklyanin, “Bäcklund transformations and Baxter's Q-operator,” nlin.SI/0009009 (2000).Google Scholar
  10. 10.
    G. P. Pronko, Commun. Math. Phys., 212, 687 (2000).Google Scholar
  11. 11.
    P. P. Kulish and N. Yu. Reshetikhin, Zap. Nauch. Sem. LOMI, 101, 101 (1980); J. Sov. Math., 23, 2435 (1983).Google Scholar
  12. 12.
    M. Jimbo, Lett. Math. Phys., 11, 247 (1986).Google Scholar
  13. 13.
    M. Jimbo, “Topics from representations of Uq(ie350-1): An introductory guide to physicists,” Preprint, Faculty of Science, Kyoto University, Kyoto 606, Japan (1991).Google Scholar
  14. 14.
    T. Deguchi, K. Fabricius, and B. M. McCoy, J. Stat. Phys., 102, 701 (2001); cond-mat/9912141 (1999).Google Scholar
  15. 15.
    S. Pakuliak and S. Sergeev, “Relativistic Toda chain at root of unity II: Modified Q-operator,” nlin.SI/0107062 (2001); S. Sergeev, “Exactly solvable lattice models in statistical physics [in Russian],” Doctoral dissertation, Inst. High-Energy Phys., Protvino (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. A. Belavin
    • 1
  • A. V. Odesskii
    • 1
  • R. A. Usmanov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow OblastRussia

Personalised recommendations