Characterization of surface oxide films on titanium and bioactivity

  • B. Feng
  • J. Y. Chen
  • S. K. Qi
  • L. He
  • J. Z. Zhao
  • X. D. Zhang
Article

Abstract

Biological properties of titanium implant depend on its surface oxide film. In the present study, the surface oxide films on titanium were characterized and the relationship between the characterization and bioactivity of titanium was studied. The surface oxide films on titanium were obtained by heat-treatment in different oxidation atmospheres, such as air, oxygen and water vapor. The bioactivity of heat-treated titanium plates was investigated by immersion test in a supersaturated calcium phosphate solution. The surface roughness, energy morphology, chemical composition and crystal structure were used to characterize the titanium surfaces. The characterization was performed using profilometer, scanning electronic microscopy, ssesile drop method, X-ray photoelectron spectroscopy, common Bragg X-ray diffraction and sample tilting X-ray diffraction. Percentage of surface hydroxyl groups was determined by X-ray photoelectron spectroscopy analysis for titanium plates and density of surface hydroxyl groups was measured by chemical method for titanium powders. The results indicated that heat-treatment uniformly roughened the titanium surface and increased surface energy. After heat-treatment the surface titanium oxide was predominantly rutile TiO2, and crystal planes in the rutile films preferentially orientated in (1 1 0) plane with the highest density of titanium ions. Heat-treatment increased the amount of surface hydroxyl groups on titanium. The different oxidation atmospheres resulted in different percentages of oxygen species in TiO2, in physisorbed water and acidic hydroxyl groups, and in basic hydroxyl groups on the titanium surfaces. The immersion test in the supersaturated calcium phosphate solution showed that apatite spontaneously formed on to the rutile films. This revealed that rutile could be bioactivated. The analyses for the apatite coatings confirmed that the surface characterization of titanium has strong effect on bioactivity of titanium. The bioactivity of the rutile films on titanium was related not only to their surface basic hydroxyl groups, but also to acidic hydroxyl groups, and surface energy. Heat-treatment endowed titanium with bioactivity by increasing the amount of surface hydroxyl groups on titanium and its surface energy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Van Noort, J. Mater. Sci. 22 (1987) 3801.Google Scholar
  2. 2.
    J. B. Park and R. S. Lakes, in “Biomaterials: An Indroduction” (Plenum Press, New York, 1992) p. 89.Google Scholar
  3. 3.
    M. Browne and P. Gregson, J. Biomaterials 15 (1994) 894.Google Scholar
  4. 4.
    M. Shirkhanzadeh and S. Sims, J. Mater. Sci. Mater. Med. 8 (1997) 595.Google Scholar
  5. 5.
    P. Li, K. De Groot and T. Kokubo, J. Am. Ceram. Soc. 77 (1994) 530.Google Scholar
  6. 6.
    H. Ishizawa, M. Fujino and M. Ogino, J. Biomed. Mater. Res. 29 (1995) 1459.Google Scholar
  7. 7.
    T. Hanawa and M. Ota, Biomaterials 12 (1991) 767.Google Scholar
  8. 8.
    C. Ohitsuki, H. Iida, S. Hayakawa and A. Osaka, J. Biomed. Mater. Res. 35 (1997) 39.Google Scholar
  9. 9.
    D. H. Kaeble, J. Adhesion 2 (1970) 66.Google Scholar
  10. 10.
    D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13 (1969) 1741.Google Scholar
  11. 11.
    A. Kozawa, J. Electreochem. Soc. 106 (1959) 552.Google Scholar
  12. 12.
    T. Hanawa, M. Kon, H. Ukai, K. Murakami, H. Hamanaka and K. Asaoka, J. Mater. Sci. Mater. Med. 9 (1998) 89.Google Scholar
  13. 13.
    R. K. Quinn and N. R. Amostring, J. Electrochem. Soc. Electrochem. Sci. Technol. 125 (1978) 1790.Google Scholar
  14. 14.
    J. L. Ong, L. C. Laucas, G. N. Raikar and J. C. Gregory, Appl. Surf. Sci. 72 (1993) 7.Google Scholar
  15. 15.
    J. Lausmaa, B. Kasemo and H. Mattson, ibid. 44 (1990) 133.Google Scholar
  16. 16.
    K. E. Healy and P. Ducheyne, J. Biomed. Mater. Res. 26 (1992) 319.Google Scholar
  17. 17.
    M. V. Kuznetsov, F. J. Zhuravlev, V. A. Zhilyaev and V. A. Gubanov, J. Electrn. Spectrosc. Relat. Phennom. 58 (1992) 1.Google Scholar
  18. 18.
    M. Browne, P. J. Gregson and R. H. West, J. Mater. Sci. Mater. Med. 7 (1996) 323.Google Scholar
  19. 19.
    T. K. Sham and M. S. Lazarus, Chem. Phys. Lett. 68 (1979) 426.Google Scholar
  20. 20.
    H. P. Boehm, Disc. Faraday Soc. 52 (1971) 264.Google Scholar
  21. 21.
    S. A. Redey, S. Razzouk, C. Rey, D. Bernache-Assollant, G. Leroy, M. Nardin and G. Cournot, J. Biomed. Mater. Res. 45 (1999) 140.Google Scholar
  22. 22.
    L. J. Ong, V. A. Hoppe, H. L. Cardenas, R. Cavin, D. L. Carnes, A. Sogal and G. N. Raikar, ibid. 39 (1998) 176.Google Scholar
  23. 23.
    R. C. Weast (ed.) in “CRC Handbook of Chemistry and Physics. 70th Edition, 1989–1990,” (CRC Press Inc., Boca Raton, Florida, D-90).Google Scholar
  24. 24.
    B. F. Lowenberg, S. Lugowski, M. Chipman and J. E. Davis, J Mater. Sci. Mater. Med. 5 (1994) 467.Google Scholar
  25. 25.
    B. W. Callen, B. F. Lowenberg, S. Lugowski, R. N. S. Sodhi and J. E. Davis, J. Biomed. Mater. Res. 29 (1995) 279.Google Scholar
  26. 26.
    P. A. Lee, K. F. Stork, B. L. Maschhoff, K. W. Nebesny and N. R. Armstrong, Surf. Interf. Analy. 17 (1991) 48.Google Scholar
  27. 27.
    J. M. Pan, B. L. Maschhoff, U. Diehold and T. E. Madey, J. Vac. Sci. Technol. A. 10 (1992) 2470.Google Scholar
  28. 28.
    J. E. Sundgren, P. Bodo and I. Lundstrom, J. Collid. Interf. Sci. 110 (1986) 9.Google Scholar
  29. 29.
    P. Li and K. De Groot, J. Biomed. Mater. Res. 27 (1993) 1495.Google Scholar
  30. 30.
    P. Li and P. Ducheyne, ibid. 41 (1998) 341.Google Scholar
  31. 31.
    P. Joens and J. A. Hockey, Trans. Faraday. 67 (1971) 2679.Google Scholar
  32. 32.
    W. Van Der Vegt, H. C. Van Der Mei and H. J. Busscher, Langmuir 10 (1994) 1314.Google Scholar
  33. 33.
    J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford Jr, D. D. Dean, D. L. Cochran and B. D. Boyan, J. Biomed. Mater. Res. 29 (1995) 389.Google Scholar
  34. 34.
    M. Lampin, R. W-Clerout, C. Legris and M. F. S-Luizard, ibid. 36 (1997) 99.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • B. Feng
    • 1
    • 2
  • J. Y. Chen
    • 1
  • S. K. Qi
    • 3
  • L. He
    • 3
  • J. Z. Zhao
    • 3
  • X. D. Zhang
    • 1
  1. 1.Engineering Research Center in BiomaterialsSichuan UniversityChengduChina
  2. 2.Department of Material Science and EngineeringSichuan University of Science and TechnologyChengduChina
  3. 3.Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations