Journal of Assisted Reproduction and Genetics

, Volume 19, Issue 3, pp 132–136 | Cite as

Human Papillomavirus and Blastocyst Apoptosis

  • Joan H. Calinisan
  • Steven R. Chan
  • Alan King
  • Philip J. ChanEmail author


Purpose: The effect of human papillomavirus (HPV) DNA from the E6-E7 region on the integrity of DNA in blastocyst stage embryonic cells was studied. The study design paralleled the event whereby HPV DNA from the infecting virus would target host cell DNA. The objectives were (a) to determine if the DNA of blastocysts were disrupted by the presence of HPV DNA and (b) to determine if the intensity of DNA damage was associated with the type of HPV.

Methods: This study involved superovulating female mice, mating, collecting one-cell embryos, and culturing to the expanded blastocyst stage. The blastocysts were infected with PCR-synthesized DNA fragments from either HPV type 16, 18, 31, or 33. The blastocyst DNA were analyzed by comet assay after 24 h of incubation. The fluorescent images were digitized and the pixel intensity of each blastocyst was measured.

Results: Only the DNA of HPV type 16 was associated with significant DNA fragmentation in comparison with the other HPV types. There was no relationship between HPV DNA fragment size and the intensity of DNA fragmentation.

Conclusions: The data suggested that one mode of action of HPV type 16 was to initiate apoptosis of embryonic cells through DNA fragmentation. The effect of HPV 16 occurred rapidly within 24 h. The intensity of DNA damage was not linked to the specific type of HPV. However, the results do not rule out the other HPV types affecting embryos under conditions different from this study.

Blastocyst comet assay embryo human papillomavirus HPV single cell gel electrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hermonat PL, Kechelava S, Lowery CL, Korourian S: Trophoblasts are the preferential target for human papilloma virus infection in spontaneously aborted products of conception. Human Pathol 1998;29:170–174Google Scholar
  2. 2.
    Stagno S, Pass RF, Dworsky ME, Alford CA: Congenital and perinatal cytomegalovirus infections. Semin Perinatol 1986;7:31–42Google Scholar
  3. 3.
    Icart J, Didier J, Dalens M, Chabanon G, Boucays A: Prospective study of EBV infection during pregnancy. Biomedicine 1981;34:160–163Google Scholar
  4. 4.
    Brown ZA, Vontver LA, Benedetti J, Critchlow CW, Sells CJ, Berry S, Corey L: Effects on infants of a first episode of genital herpes during pregnancy. N Engl J Med 1987;317:1246–1251Google Scholar
  5. 5.
    Monif GR: Maternal mumps infections during gestation: Observations in the progeny. Am J Obstet Gynecol 1974;119:549–551Google Scholar
  6. 6.
    Miller E, Cradock-Watson JE, Pollock TM: Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 1982;2:781–784Google Scholar
  7. 7.
    Hermonat PL, Han L, Wendel PJ, Quirk JG, Stern S, Lowery CL, Rechtin TM: Human papillomavirus is more prevalent in first trimester spontaneously aborted products of conception compared to elective specimens. Virus Genes 1997;14:13–17Google Scholar
  8. 8.
    Manavi M, Czerwenka KF, Schurz B, Knogler W, Kubista E, Reinold E: Latent cervical virus infection as a possible cause of early abortion. Gynakol Geburtshilfliche Rundsch 1992;32: 84–87Google Scholar
  9. 9.
    Malhomme O, Dutheil N, Rabreau M, Armbruster-Moraes E, Schlehofer JR, Dupressoir T: Human genital tissues containing DNA of adeno-associated virus lack DNA sequences of the helper viruses, adenovirus, herpes simplex virus or cytomegalovirus but frequently contain human papillomavirus DNA. J Gen Virol 1997;78:1957–1962Google Scholar
  10. 10.
    Sifakis S, Ergazaki M, Sourvinos G, Koffa M, Koumantakis E, Spandidos DA: Evaluation of parvo B19, CMV, and HPV viruses inhumanaborted material using polymerase chain reaction technique. Eur J Obstet Gynecol Reprod Biol 1998;76: 169–173Google Scholar
  11. 11.
    Chan PJ, Seraj IM, Kalugdan TH, King A: Blastocysts exhibit preferential uptake of DNA fragments from the E6-E7 conserved region of the human papillomavirus. Gynecol Oncol 1995;58:194–197Google Scholar
  12. 12.
    Chan PJ, Seraj IM, Kalugdan TH, King A: Evidence for ease of transmission of human papillomavirus DNA from sperm to cells of the uterus and embryo. J Assist Reprod Genet 1996;13:516–519Google Scholar
  13. 13.
    Alani RM, Münger K: Human papillomavirus and associated malignancies. J Clin Oncol 1997;16:330–337Google Scholar
  14. 14.
    Rafferty KA Jr: Superovulation and phasing of ovulation. In Methods in Experimental Embryology of the Mouse, KA Rafferty Jr (ed), Baltimore, The John Hopkins Press, 1970, pp 23–29Google Scholar
  15. 15.
    Quinn PJ, Kerin JF, Warnes GM: Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 1985;44: 493–498Google Scholar
  16. 16.
    Ting Y, Manos MM: Detection and typing of genital human papillomaviruses. In PCR Protocols, MA Innis, DH Gelfand, JJ Sninsky, TJ White (eds), New York, Academic Press, 1990, pp 356–367Google Scholar
  17. 17.
    Sarkar FH, Crissman JD: Detection of human papilloma virus DNA sequences by polymerase chain reaction. Biotechniques 1990;9:180–185Google Scholar
  18. 18.
    Chan PJ, Kalugdan TH, Cabrera M, Seraj IM, King A: Detection of exogenous DNA in blastocysts after continuous exposure to DNA carrier sperm. J Assist Reprod Genet 1996;13:602–605Google Scholar
  19. 19.
    Dürst M, Croce CM, Gissmann L, Schwarz E, Huebner K: Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 1987; 84:1070–1074Google Scholar
  20. 20.
    Yunis JJ, Soreng AL, Bowe AE: Fragile sites are targets of diverse mutagens and carcinogens. Oncogene 1987;1: 59–69Google Scholar
  21. 21.
    Cannizzaro LA, Dürst M, Mendez MJ, Hecht BK, Hecht F: Regional chromosome localization of human papillomavirus integration sites near fragile sites, oncogenes and cancer chromosome breakpoints. Cancer Genet Cytogenet 1988;33:93–98Google Scholar
  22. 22.
    Popescu NC, DiPaolo JA: Preferential sites for viral integration on mammalian genome. Cancer Genet Cytogenet 1989;42: 157–171Google Scholar
  23. 23.
    Rassool FV, McKeithan TW, Neilly ME, van Melle E, Espinosa R III, Le Beau MM: Preferential integration of marker DNA into the chromosomal fragile site at 3p14: An approach to cloning fragile sites. Proc Natl Acad Sci USA 1991;88:6657–6661Google Scholar
  24. 24.
    Smith PP, Friedman CL, Bryant EM, McDougall JK:Viral integration and fragile sites in human papillomavirus-immortalized human keratinocyte cell lines. Genes Chromosomes Cancer 1995;5:150–157Google Scholar
  25. 25.
    Gallego MI, Lazo PA: Deletion in human chromosome region 12q13-15 by integration of human papillomvirus DNA in a cervical carcinoma cell line. J Biol Chem 1995;270: 24321–24326Google Scholar
  26. 26.
    Graham DA, Herrington CS: The induction of chromosome abnormalities by human papillomavirus. Papillomavirus Rep 1998;9:1–5Google Scholar
  27. 27.
    Östling O, Johanson KJ: Microelectrophoretic study of radiation-induced DNA damages in individual cells. Biochem Biophys Res Commun 1984;123:291–298Google Scholar
  28. 28.
    Singh NP, McCoy MT, Tice RR, Schneider EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184–191Google Scholar
  29. 29.
    Singh NP, Danner D, Tice RR, McCoy MT, Collins GD, Schneider EL: Abundant alkali sensitive sites in DNA of human and mouse sperm. Exp Cell Res 1989;184: 461–470Google Scholar
  30. 30.
    Fairbairn DW, Olive PL, O'Neill KL: The comet assay: A comprehensive review. Mutat Res 1995;339:37–59Google Scholar
  31. 31.
    McKelvey-Martin VJ, Green MHL, Schmezer P, Pool-Zobel BL, De Meo MP, Collins A: The single cell gel electrophoresis assay (comet assay): A European review. Mutat Res 1993;288:47–63Google Scholar
  32. 32.
    Kizilian N, Wilkins RC, Reinhardt P, Ferrarotto C, McLean JR, McNamee JP: Silver-stained comet assay for detection of apoptosis. Biotechniques 1999;27:926–930Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Joan H. Calinisan
    • 1
  • Steven R. Chan
    • 1
  • Alan King
    • 1
  • Philip J. Chan
    • 1
    • 2
    Email author
  1. 1.Department of Gynecology and ObstetricsLoma Linda University School of MedicineLoma Linda
  2. 2.Departments of Physiology and PharmacologyLoma Linda University School of MedicineLoma Linda

Personalised recommendations