Photosynthesis Research

, Volume 70, Issue 3, pp 249–256 | Cite as

Carotenoids and bacterial photosynthesis: The story so far...

  • Niall J. Fraser
  • Hideki Hashimoto
  • Richard J. Cogdell


This concise review describes the current status of research into how carotenoids function in bacterial photosynthesis. This is illustrated by reference to very recent studies on both the photoprotective and antenna functions of carotenoids. The major remaining open questions on the detailed molecular mechanisms involved in these reactions are highlighted.

bacterial photosynthesis bacteriochlorophyll carotenoids light-harvesting reaction centres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson PO, Gillbro T, Ferguson L and Cogdell RJ (1991) Absorption spectral shifts of carotenoids related to medium polarizability. Photochem Photobiol 54: 353–360Google Scholar
  2. Borland CF, McGarvey DJ, Truscott TG, Cogdell RJ and Laird EJ (1987) Photophysical studies of bacteriochlorophylla and bacteriopheophytina-singlet oxygen generation. J Photochem Photobiol B 1: 93–101CrossRefGoogle Scholar
  3. Christensen RL (1999) The electronic states of carotenoids. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 137–150. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  4. Clayton RK (1963) Towards the isolation of a photochemical reaction centre in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75: 312–323PubMedCrossRefGoogle Scholar
  5. Cogdell RJ and Frank HA (1987) The function of carotenoids in photosynthesis. Biochim Biophys Acta 63: 1–17Google Scholar
  6. Cogdell RJ, Hipkins MF, MacDonald W and Truscott TG (1981) Energy transfer between the carotenoid and the bacteriochlorophyll within the B800-B850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634: 191–202PubMedCrossRefGoogle Scholar
  7. Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer J and Lubitz W (2000) How carotenoids protect bacterial photosynthesis. Proc R Soc London B 355: 1345–1349CrossRefGoogle Scholar
  8. Damjanovic A, Ritz T and Schulten K (1999) Energy transfer between carotenoids and bacteriochlorophylls in a light harvesting protein. Phys Rev E 59: 3293–3311CrossRefGoogle Scholar
  9. Davidson E and Cogdell RJ (1981a) The polypeptide composition of the B850 light-harvesting pigment-protein complex from Rps. sphaeroides R26.1. FEBS Lett 132: 81–84.CrossRefGoogle Scholar
  10. Davidson E and Cogdell RJ (1981b) Reconstitution of carotenoids with the light-harvesting pigment-protein complex from the carotenoidless mutant Rps. sphaeroides R26. Biochim Biophys Acta 635: 295–303PubMedCrossRefGoogle Scholar
  11. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) Xray structure analysis of a membrane protein complex: Electron density map at 3Å resolution and a model of the chromaphores of the photosynthetic reaction centre from Rhodopsuedomonas viridis. J Mol Biol 180: 385–398PubMedCrossRefGoogle Scholar
  12. Desamero RZB, Chynwat V, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, Cua A, Bocian DF and Frank HA (1998) Mechanism of energy transfer from carotenoids to bacteriochlorophyll: Light-harvesting by carotenoids having different extents of ό-electron conjugation incorporated within the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1. J Phys Chem B 102: 8151–8162.CrossRefGoogle Scholar
  13. Foote CS, Chang YC and Denny RW (1970) Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J Am Chem Soc 92: 5216–5218PubMedCrossRefGoogle Scholar
  14. Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264PubMedGoogle Scholar
  15. Frank HA, Desamero RZB, Chynwat V, Gebhard R, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D and Wasielewski MR (1997) Spectroscopic properties of spheroidene analogs having different extents of ό-electron conjugation. J Phys Chem A 101: 149–157CrossRefGoogle Scholar
  16. Frank HA, Young AJ, Britton G and Cogdell RJ (eds) (1999) The photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  17. Fraser NJ, Dominy PJ, Ñcker B, Simonin I, Scheer H and Cogdell RJ (1999) Selective release, removal and reconstitution of Bchla molecules into the B800 sites of LH2 complexes from Rhodopseudomonas acidophila 10050. Biochemistry 38: 9684–9692PubMedCrossRefGoogle Scholar
  18. Freer AA, Prince SM, Sauer K, Papiz MZ, Hawthornthwaite-Lawless AM, McDermott G, Cogdell RJ and Isaacs NW (1996) Pigment-protein interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4: 449–462PubMedCrossRefGoogle Scholar
  19. Gillbro T and Cogdell RJ (1989) Carotenoid fluorescence. Chem Phys Lett 158: 312–316CrossRefGoogle Scholar
  20. Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA and van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: Singlet to triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad USA 98: 2364–2369CrossRefGoogle Scholar
  21. Griffiths M, Sistrom WR, Cohen-Battire G and Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176: 1211–1214PubMedCrossRefGoogle Scholar
  22. Gust D, Moore TA and Moore A (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34: 40–48PubMedCrossRefGoogle Scholar
  23. Herek JL, Fraser NJ, Pullerits T, Martinsson P, Polìvka T, Scheer H, Cogdell RJ and Sundström V (2000) B800-B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment-exchangeGoogle Scholar
  24. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diedereichts K (1996) Structural basis of light-harvesting by carotenoids: Peridinin-chlorophylla-protein from Amphidinium carterae Science 272: 1788–1791PubMedGoogle Scholar
  25. Hudson BS and Kohler BE (1974) Linear polyene electronic structure and spectroscopy. Ann Rev Phys Chem 25: 437–460CrossRefGoogle Scholar
  26. Kennis JTM, Streltsov AM, Vulto STE, Aartsma TJ, Nozowa T and Amesz J (1997) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101: 7827–7834CrossRefGoogle Scholar
  27. Kingma H, van Grondelle R and Duysens LNM (1985) Magnetic-field effects in photosynthetic bacteria 2: Formation of tripletstates in the reaction centre and the antenna of Rhodosprillum rubrum and Rhodopseudomonas sphaeroides magnetic-field effects. Biochim Biophys Acta 808: 383–399CrossRefGoogle Scholar
  28. Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581–597PubMedCrossRefGoogle Scholar
  29. Koyama Y, Kuki M, Andersson P-O and Gillbro T (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63: 243–256Google Scholar
  30. Krueger BP, Scholes GD, Jimenez R and Fleming GR (1998) Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J Phys Chem B 102: 2284–2292CrossRefGoogle Scholar
  31. Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic resolution of plant light-harvesting complex by electron crystallography. Nature 367: 614–621PubMedCrossRefGoogle Scholar
  32. Lang HP and Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 298: 197–205PubMedGoogle Scholar
  33. Ma Y-Z, Cogdell RJ and Gillbro T (1997) Energy transfer and exciton annihilation in the B800-850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (strain 10050): A femtosecond transient absorption study. J Phys Chem B 101: 1087–1095CrossRefGoogle Scholar
  34. Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ and Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80: 923–930PubMedCrossRefGoogle Scholar
  35. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW(1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521CrossRefGoogle Scholar
  36. Monger TG, Cogdell RJ and Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta 449: 136–153PubMedCrossRefGoogle Scholar
  37. Nagae H, Kakitani T, Katoh T and Mimuro M (1993) Calculation of the excitation transfer matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll J Phys Chem 98: 8012–8023CrossRefGoogle Scholar
  38. Rademaker H, Hoff AJ, van Grondelle R and Duysens LNM (1980) Carotenoid triplet yields in normal and deuterated Rhodospirillum rubrum. Biochim Biophys Acta 592: 240–257PubMedCrossRefGoogle Scholar
  39. Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in purple photosynthetic bacteria: B800 - B850 energy transfer. J Phys Chem B 104: 1854–1868CrossRefGoogle Scholar
  40. Scholes GD, Harcourt RD and Fleming GR (1997) Electronic interactions in photosynthetic light-harvesting complexes: The role of carotenoids. J Phys Chem B 101: 7302–7312CrossRefGoogle Scholar
  41. Sashima T, Nagae H, Kuki M and Koyama Y (1999) A new singleexcited state of all-trans-spheroidene as detected by resonance-Raman excitation profiles. Chem Phys Lett 299: 187–194CrossRefGoogle Scholar
  42. Sashima T, Koyama Y, Yamada T and Hashimoto H (2000) The 1Bu +, 1Bu ό-electron, and 2Ag ό-electron Energies of Crystalline Lycopene, ?-Carotene, and Mini-9-β-carotene as Determined by Resonance-Raman Excitation Profiles: Dependence of the 1Bu? State Energy on the Conjugation Length. J Phys Chem B 104: 5011–5019CrossRefGoogle Scholar
  43. Shreve AP, Trautman JK, Owens TG and Albrecht AC (1991) Determination of the S2 lifetime of β-carotene. Chem Phys Lett 178: 89–96CrossRefGoogle Scholar
  44. Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting. Reconciling the dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346CrossRefGoogle Scholar
  45. Tavan P and Schulten K (1986) The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study. J Chem Phys 85: 6602–6609CrossRefGoogle Scholar
  46. Tavan P and Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36: 4337–4358CrossRefGoogle Scholar
  47. Thomas JB and Goedheer JC (1953) Relative efficiency of light absorbed by carotenoids in photosynthesis and phototaxis of Rhodospirillum rubrum. Biochim Biophys Acta 10: 385–390PubMedCrossRefGoogle Scholar
  48. Yeates TO, Komiya H, Chrino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction centre from Rhodobacter sphaeroides R-26 and 2.4.1: Protein-cofactor bacteriochlorophyll, bacteriopheophytin and carotenoid interactions. Proc Natl Acad Sci USA 85: 7993–7997PubMedCrossRefGoogle Scholar
  49. Yoshizawa M, Aoki H and Hashimoto H (2001) Vibrational relaxation of the 2Ag excited state in all-trans-β-carotene obtained by femtosecond time-resolved Raman spectroscopy, Phys Rev B. 63: 180–301(R)CrossRefGoogle Scholar
  50. Zhang J-P, Fujii R, Qian P, Inaba T, Mizoguchi T, Koyama Y, Onaka K, Watanabe Y and Nagae H (2000) Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S1 state in the LH2 complexes from purple bacteria. J Phys Chem B 104: 3683–3691CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Niall J. Fraser
    • 1
  • Hideki Hashimoto
    • 1
    • 2
  • Richard J. Cogdell
    • 1
  1. 1.Division of Biochemistry & Molecular Biology, Davidson Building, IBLSUniversity of GlasgowGlasgowUK
  2. 2.Department of Materials Science and Chemical Engineering, Faculty of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations