Biomedical Microdevices

, Volume 4, Issue 2, pp 141–149 | Cite as

Use of Air-Liquid Two-Phase Flow in Hydrophobic Microfluidic Channels for Disposable Flow Cytometers

  • Dongeun Huh
  • Yi-Chung Tung
  • Hsien-Hung Wei
  • James B. Grotberg
  • Steven J. Skerlos
  • Katsuo Kurabayashi
  • Shuichi Takayama
Article

Abstract

This paper describes a disposable flow cytometer that uses an air-liquid two-phase microfluidic system to produce a focused high-speed liquid sample stream of particles and cells. The susceptibility of thin liquid columns to instabilities may suggest that focusing of sample liquids with streams of air would be difficult. The design of channel geometry, control of flow rates, and use of appropriate surface chemistries on the channel walls, however, enabled the generation of thin (15–100 μm) and partially bounded sample streams that were stable and suitable for rapid cell analysis. Using an inverted epi-fluorescence microscope with a photo-multiplier tube, we demonstrated that the system is capable of counting the number of beads and C2C12 myoblast cells. The effects of different flow rates and surface chemistries of the channel walls on the air-liquid two-phase flows were characterized using optical and confocal microscopy. Use of air instead of liquids as a sheath fluid eliminates the need for large sheath liquid reservoirs, and reduces the volume and weight requirements. The low manufacturing cost and high volumetric efficiency make the air-sheath flow cytometer attractive for use as a stand-alone device or as an integrated component of bio-artificial hybrid microsystems.

air sheath flow cytometer two-phase flow surface chemistry cell counting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.K. Cavender-Bares, S.L. Frankel, and S.W. Chisholm, Limnol. Oceanography 43(6), 1383-1388 (1998).Google Scholar
  2. K.A. Criswell, M.R. Bleavins, D. Zielinski, J.C. Zandee, and K.M. Walsh, Cytometry 32(1), 18-27 (1998).Google Scholar
  3. P.J. Crosland-Taylor, Nature 171, 37-38 (1953).Google Scholar
  4. A. Cunningham, J. Plankton Res. 12(1), 149-160 (1990).Google Scholar
  5. G.B.J. Dubelaar and P.L. Gerritzen, Scientia Marina 64(2), 255-265 (2000).Google Scholar
  6. G.B.J. Dubelaar, P.L. Gerritzen, A.E.R. Beeker, R.R. Jonker, and K. Tangen, Cytometry 37(4), 247-254 (1999).Google Scholar
  7. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Anal. Chem. 70(23), 4974-4984 (1998).Google Scholar
  8. D. Fenili and B. Pirovano, Clin. Chem. Lab. Med. 36(12), 909-917 (1998).Google Scholar
  9. A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, and S.R. Quake, Nature Biotech. 17(11), 1109-1111 (1999).Google Scholar
  10. C.L. Harding, D.R. Lloyd, C.M. McFarlane, and M. Al-Rubeai, Biotechnol. Prog. 16(5), 800-802 (2000).Google Scholar
  11. C.I. Hung, B.J. Ke, G.R. Huang, B.H. Hwei, H.F. Lai, and G.B. Lee, J. Fluids Eng.-Trans. Asme 123(3), 672-679 (2001).Google Scholar
  12. D.E. Kataoka and S.M. Troian, Nature 402(6763), 794-797 (1999).Google Scholar
  13. R. Miyake, H. Ohki, I. Yamazaki, and T. Takagi, Jsme Int. J. B-Fluids Thermal Eng. 40(1), 106-113 (1997).Google Scholar
  14. R. Miyake, H. Ohki, I. Yamazaki, and T. Takagi, Jsme Int. J. B-Fluids Thermal Eng. 43(2), 219-224 (2000).Google Scholar
  15. S. Niehren, W. Kinzelbach, S. Seeger, and J. Wolfrum, Anal. Chem. 67(15), 2666-2671 (1995).Google Scholar
  16. M.G. Pollack, R.B. Fair, and A.D. Shenderov, Appl. Phys. Lett. 77(11), 1725-1726 (2000).Google Scholar
  17. H.M. Shaprio, Practical flow cytometry (Wiley-Liss, New York, 1995).Google Scholar
  18. D. Sobek, A.M. Young, M.L. Gray, and S.D. Senturia, Proc. IEEE 2, 219-224 (1993).Google Scholar
  19. H.B. Steen and T. Lindmo, Science 204, 403-404 (1979).Google Scholar
  20. D.S. Stein, J.A. Korvick, and S.H. Vermund, J. Infect. Dis. 165(2), 352-363 (1992).Google Scholar
  21. B. Zhao, J.S. Moore, and D.J. Beebe, Science 291(5506), 1023-1026 (2001).Google Scholar
  22. N.A. Zilmer, M. Godavarti, J.J. Rodriguez, T.A. Yopp, G.M. Lambert, and D.W. Galbraith, Cytometry 20(2), 102-117 (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Dongeun Huh
    • 1
    • 4
  • Yi-Chung Tung
    • 2
    • 4
  • Hsien-Hung Wei
    • 1
    • 4
  • James B. Grotberg
    • 1
    • 4
  • Steven J. Skerlos
    • 2
    • 4
  • Katsuo Kurabayashi
    • 2
    • 4
    • 3
  • Shuichi Takayama
    • 1
    • 4
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn Arbor
  2. 2.Department of Mechanical EngineeringUniversity of MichiganAnn Arbor
  3. 3.Department of Macromolecular Science and EngineeringUniversity of Michigan, Ann ArborAnn Arbor
  4. 4.GG BrownAnn Arbor

Personalised recommendations