Journal of Materials Science

, Volume 37, Issue 7, pp 1301–1308 | Cite as

Spectral analysis of transition metal-doped MgO “matched emitters” for thermophotovoltaic energy conversion

  • L. G. Ferguson
  • F. Dogan
Article

Abstract

A new, thermally excited Co/Ni-doped MgO ceramic emitter for TPV energy conversion is described in this work, and termed the “matched emitter” because its emissive power spectrum is very efficiently matched with the portion of the electromagnetic spectrum that can be converted directly into electrical energy by infrared responding GaSb photovoltaic cells. Ligand Field Theory calculations are used to estimate the crystal field splitting energies at high temperatures for Co and Ni-doped MgO matched emitters. Experimental measurements of the high temperature (1300–1400°C) emissive power spectrums for Co and Ni-doped MgO emitters are compared with predictions obtained from ligand field calculations for what is believed to be the first time. It was found that crystal field splitting energies of 10 Dq = 9070 cm−1 represented the “best fit” for the Co-doped MgO high temperature emissive power spectrum, and 10 Dq = 7950 cm−1 for the Ni-doped MgO spectrum. These values are only slightly lower than values reported for corresponding single crystal, transition metal doped laser materials that were measured at or well below room temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. FERGUSON and F. DOGAN, J. Mater. Sci. 36 (2001) 137.Google Scholar
  2. 2.
    Idem., Materials Science and Engineering B 83 (2001) 35.Google Scholar
  3. 3.
    T. J. COUTTS, Renewable and Sustainable Energy Reviews 3 (1999) 77.Google Scholar
  4. 4.
    A. SCHOCK and V. KUMAR, in 1st NREL, Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 321, Copper Mountain, CO, 1994, edited by T. J. Coutts and J. P. Benner (American Institute of Physics, 1995) p. 139.Google Scholar
  5. 5.
    D. L. CHUBB, B. S. GOOD and R. A. LOWE, in 2nd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 358, Colorado Springs, CO, 1995, edited by J. P. Benner, T. J. Coutts, D. S. Ginley (American Institute of Physics, 1996) p. 181.Google Scholar
  6. 6.
    SUNDARAM, S. B. SABAN, M. D. MORGAN, W. E. HORNE, B. D. EVANS, J. R. KETTERL, M. B. Z. MOROSINI, N. B. PATEL and H. FIELD, in 3rd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 401, Colorado Springs, CO, 1997, edited by T. J. Coutts, C. S. Allman and J. P. Benner (American Institute of Physics, 1997) p. 105.Google Scholar
  7. 7.
    E. KITTL, in Proc. 20th Annual Power Sources Conference (PSC Publ. Comm., Red Bank, NJ, May 1966) p. 178.Google Scholar
  8. 8.
    G. E. GUAZZONI, Applied Spectroscopy 26 (1972) 60.Google Scholar
  9. 9.
    Z. CHEN, P. L. ADAIR and M. F. ROSE, in 3rd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conf. Proc. 401, Colorado Springs, CO, 1997, edited by J. P. Benner, T. J. Coutts and D. S. Ginley (American Institute of Physics, 1997) p. 181.Google Scholar
  10. 10.
    L. G. FERGUSON, Ph.D. Dissertation, Department of Materials Science and Engineering, University of Washington, March 2000.Google Scholar
  11. 11.
    K. NASSAU, “The Physics and Chemistry of Color—The Fifteen Causes of Color” (Wiley, New York, 1983).Google Scholar
  12. 12.
    Y.-M. CHIANG, D. P. BIRNIE I I I and W. D. KINGERY, “Physical Ceramics” (John Wiley and Sons, 1997).Google Scholar
  13. 13.
    R. H. FRENCH, J. Amer. Ceram. Soc. 73 (1990) 477.Google Scholar
  14. 14.
    L. L. HENCH and J. K. WEST, “Principles of Electronic Ceramics” (Johns Wiley and Sons, New York, 1990).Google Scholar
  15. 15.
    P. A. COX, “Transition Metal Oxides” (Oxford Science Publications, 1992).Google Scholar
  16. 16.
    G. TIMMER and G. BORSTEL, Physical Review B 43 (1991) 5098.Google Scholar
  17. 17.
    K. W. BLAZEY, Physica 89B (1977) 47.Google Scholar
  18. 18.
    A. M. STONEHAM and M. J. SANGSTER, Phil. Mag. B 43 (1981) 609.Google Scholar
  19. 19.
    K. W. BLAZEY, J. Phys. Chem. Solids 38 (1977) 671.Google Scholar
  20. 20.
    M. KUNZ and C. KLINGSSHIRN, Materials Chemistry and Physics 25 (1990) 27.Google Scholar
  21. 21.
    G. R. FOWELS, “Introduction to Modern Optics” (Holt, Reinehart and Winston, New York, NY, 1975).Google Scholar
  22. 22.
    Y. TANABE and S. SUGANO, J. Phys. Soc. Japan 9 (1954) 753, 766.Google Scholar
  23. 23.
    W. LOW, Physical Review 109 (1958) 256.Google Scholar
  24. 24.
    B. N. FIGGIS, “Introduction to Ligand Fields”(Wiley, NewYork, NY, 1966).Google Scholar
  25. 25.
    R. PAPPALARDO, D. L. WOOD and R. C. LINARES, JR., The Journal of Chemical Physics 35 (1961) 2041.Google Scholar
  26. 26.
    W. LOW, Physical Review 109 (1958) 247.Google Scholar
  27. 27.
    R. PAPPALARDO, D. L. WOOD and R. C. LINARES, JR., The Journal of Chemical Physics 35 (1961) 1460.Google Scholar
  28. 28.
    B. D. BIRD, G. A. OSBORNE and P. J. STEPHENS, Physical Review B 5 (1972) 1800.Google Scholar
  29. 29.
    R. MONCORGE' and T. BENYATTOU, Physical Review B 37 (1988) 9186. Received 4 June and accepted 29 November 2001 1308Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • L. G. Ferguson
    • 1
  • F. Dogan
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Ceramic Engineering DepartmentUniversity of Missouri-RollaRollaUSA

Personalised recommendations