Brain Topography

, Volume 14, Issue 3, pp 151–167 | Cite as

Conductivities of Three-Layer Live Human Skull

  • M. Akhtari
  • H.C. Bryant
  • A.N. Mamelak
  • E.R. Flynn
  • L. Heller
  • J.J. Shih
  • M. Mandelkem
  • A. Matlachov
  • D.M. Ranken
  • E.D. Best
  • M.A. DiMauro
  • R.R. Lee
  • W.W. Sutherling

Abstract

Electrical conductivities of compact, spongiosum, and bulk layers of the live human skull were determined at varying frequencies and electric fields at room temperature using the four-electrode method. Current, at higher densities that occur in human cranium, was applied and withdrawn over the top and bottom surfaces of each sample and potential drop across different layers was measured. We used a model that considers variations in skull thicknesses to determine the conductivity of the tri-layer skull and its individual anatomical structures. The results indicate that the conductivities of the spongiform (16.2-41.1 milliS/m), the top compact (5.4-7.2 milliS/m) and lower compact (2.8-10.2 milliS/m) layers of the skull have significantly different and inhomogeneous conductivities. The conductivities of the skull layers are frequency dependent in the 10-90 Hz region and are non-ohmic in the 0.45-2.07 A/m2 region. These current densities are much higher than those occurring in human brain.

Live human skull Conductivity Magnetoencephalography Electroencephalography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtari, M., Bryant, H.C., Mamelak, A.N., Heller, L., Shih, J.J., Mandelkern, M., Matlachov, A., Ranken, D.M., Best, E.D. and Sutherling, W.W. Conductivities of three-layer human skull. Brain Topography, 2000, 13: 10-14.Google Scholar
  2. Akhtari, M., McNay, D., Mandelkern, M., Teeter, B., Cline, H.E., Malik, J., Clark, G., Tatar, R., Lufkin, R., Rogers, R.L. and Sutherling, W.W. Somatosensory evoked response source localization using actual cortical surface as the spatial constraint. Brain Topography, 1994, 7: 63-69.PubMedCrossRefGoogle Scholar
  3. Alberstone, C.D., Skirboll, S.L., Benzel, E.C., Sanders, J.A., Hart, B.L., Baldwin, N.G., Tessman, C.L., Davis, J.T. and Lee, R.R. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J. Neurosurg., 2000 Jan, 92(1): 79-90.PubMedGoogle Scholar
  4. Barnard, A.C.L., Duck, I.M. and Lynn, M.S. Biophys. J., 1967, vol. 7, 443: 462.Google Scholar
  5. Baumgartner, U., Vogel, H., Ellrich, J., Gawehn, J., Stoeter, P. and Treede, R.D. Brain electrical source analysis of primary cortical components of the tibial nerve somatosensory evoked potential using regional sources. Electroencephalogr. Clin. Neurophysiol., 1998 Nov: 108.Google Scholar
  6. Beers, Y. Introduction to the theory of error. Addison-Wesley Publishing Company Inc. Cambridge 42, Mass., 1953.Google Scholar
  7. Berendse, H.W., Verbunt, J.P., Scheltens, P., van Dijk, B.W. and Jonkman, E.J. Magenetoencephalographic analysis of cortical activity in Alzheimer's disease: a pilot study. Clin. Neurophysiol., 2000 Apr 1, 111(4): 604-612.PubMedCrossRefGoogle Scholar
  8. Breier, J.I., Simos, P.G., Zouridakis, G. and Papanicolaou, A.C. Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography. Brain Topogr., 1999a Winter, 12(2): 89-97.PubMedCrossRefGoogle Scholar
  9. Breier, J.I., Simos, P.G., Zouridakis, G., Wheless, J.W., Willmore, L.J., Constantinou, J.E.C., Maggio, W.W. and Papanicolaou, A.C. Language dominance determined by magnetic source imaging. A comparison with the Wada procedure. Neurology, 1999b Sept., 53(2): 938-945.PubMedGoogle Scholar
  10. Buchner, H., Kauert, C. and Radermacher, I. Short-term changes of finger representation at the somatosensory cortex in humans. Neurosci. Lett., 1995 Sep 22, 198(1): 57-59.PubMedCrossRefGoogle Scholar
  11. Buchner, H., Knoll, G., Fuchs, M., Rienacker, A., Beckmann, R., Wagner, M., Silny, J. and Pesch, J. Inverse localization of electric dipole current source in finite element models of the human head. Electroencephalogr. Clin. Neurophysiol., 1997 Apr: 102.Google Scholar
  12. Chakkalakal, D.A. and Jouhnson, M.W. Electrical properties of compact bone. Clin. Ortho. Rel. Res., 1981, 161: 133-145.Google Scholar
  13. Chakkalakal, D.A., Jouhnson, M.W., Harper, R.A. and Katz, J.L. Dielectric properties of fluid-saturated bone. IEEE Trans. Biomed. Eng., 1980 27(2): 95-100.PubMedGoogle Scholar
  14. Cohen, D., Cuffin, B.N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G.R., Ives, J., Kennedy, J.G. and Schomer, D.L. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 1990, 28: 811-817.PubMedCrossRefGoogle Scholar
  15. Crouzeix, A., Yvert, B., Bertrand, O. and Pernier, J. An evaluation of dipole reconstruction accuracy with spherical and realistic head models in MEG. Clin. Neurophysiol., 1999 Dec., 110(12): 2176-2188.PubMedCrossRefGoogle Scholar
  16. Cuffin, B.N., Cohen, D., Yanokuchi, K., Maniewski, R., Purcell, C., Cosgrove, M., Ives, J., Kennedy, J. and Schomer, D. Tests of EEG localization accuracy using implanted sources in the human brain. Ann. Neurol., 1991, 29: 132-138.PubMedCrossRefGoogle Scholar
  17. Diekmann, V., Becker, W., Jurgens, R., Grozinger, B., Kleiser, B., Richter, H.P. and Wollinsky, K.H. Localization of epileptic foci with electric, magnetic and combined electromagnetic models. Electroencephalogr. Clin. Neurophysiol., 1998 Apr: 106.Google Scholar
  18. Ebersole, J.S. Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr. Clin. Neurophysiol. Suppl., 1999, 50: 167-174.PubMedGoogle Scholar
  19. Ebersole, J. and Wade, P. Spike voltage topography and equivalent dipole localization in complex partial epilepsy. Brain Topography, 1990, (3): 21-34.PubMedCrossRefGoogle Scholar
  20. Ebersole, J. and Wade, P. Spike voltage topography identifies two types of frontotemporal epileptic foci. Neurology, 1991, (41): 1425-1433.PubMedGoogle Scholar
  21. Ebersole, J., Squires, K. and Gamelin, J. Simultaneous MEG and EEG provide complementary dipole models of temporal lobe spikes. Epilepsia, 1993, 34: 143 (Abstract).Google Scholar
  22. Fuchs, M., Drenckhahn, R., Wischmann, H.A. and Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng., 1998 Aug, 45(8): 980-997.PubMedCrossRefGoogle Scholar
  23. Fuchs, M., Wagner, M., Wischmann, H.A., Kohler, T., Theissen, A., Drenckhahn, R. and Buchner, H. Improving source reconstruction by combining bioelectric and biomagnetic data. Electroencephalogr. Clin. Neurophysiol., 1998 Aug., 107(2): 93-111.PubMedCrossRefGoogle Scholar
  24. Gabriel, C., Gabriel, S. and Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol., 1996, 41: 2231-2249.PubMedCrossRefGoogle Scholar
  25. Gallen, C.C., Sobel, D.F., Waltz, T., Aung, M., Copeland, B., Schwartz, B.J., Hirschkoff, E.C. and Bloom, F.E. Noninvasive presurgical neuromagnetic mapping of somatosensory cortex. Neurosurg., 1993 Aug., 33(2): 260-268.Google Scholar
  26. Gallen, C.C., Tecoma, E., Iragui, V., Sobel, D.F., Schwartz, B.J. and Bloom, F.E. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia, 1997 Apr., 38(4): 452-460.PubMedCrossRefGoogle Scholar
  27. Geddes, L.A. and Baker, L.E. The specific resistance of biological material — a compendium of data for the biomedical engineer and physiologist. Med. and Biol. Eng., 1967, 5: 271-293.CrossRefGoogle Scholar
  28. Geneser, F. Histologi. Munksgaard, København, 1981.Google Scholar
  29. Grynszpan, F. and Gezelowitz, D.B. Model studies of magnetocardiogram. Biophys. J., 1973 Sep., 13(9): 911-925.PubMedCrossRefGoogle Scholar
  30. Hämäläinen, M.S. and Sarvas J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng., 1989, 36(2): 165-171.PubMedCrossRefGoogle Scholar
  31. Hari, R. and Forss, N. Magnetoencephalography in study of human somatosensory cortical processing. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1999 Jul 29, 354(1387): 1145-1154.PubMedCrossRefGoogle Scholar
  32. Hauesien, J., Bottner, A., Nowak, H., Brauer, H. and Weiller, C. The influence of conductivity changes in boundary element compartments on the forward and inverse problem in electroencephalography and magnetoencephalography. Biomed. Tech. (Berl)., Jun, 44(6): 150-157.Google Scholar
  33. Haueisen, J., Ramon, C., Eiselt, M., Brauer, H. and Nowak, H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans. Biomed. Eng., 1997, 44(8).Google Scholar
  34. Hayes, W.L. Statistics. 4th Ed. Holt, Rinehart and Winston, Chicago, 1988: 1,029.Google Scholar
  35. Helmholtz, H. "Ueber einige Gesetze der Vertheilung elektrischer Stroeme im koerperlichen Leitern, mit Anwendung auf die thierischelektrischen Versuche." Ann. Phys. Chem., 1853, 89: 211-233, 353-377.Google Scholar
  36. Herrmann, C.S., Oertel, U., Wang, Y., Maess, B. and Friederici, A.D. Noise affects auditory and linguistic processing differently: an MEG study. Neuroreport, 2000 Feb 7, 11(2): 227-229.PubMedGoogle Scholar
  37. Hisada, K., Morioka, T., Nishio, S., Muraishi, M., Yamamoto, T. and Yoshida, T. Magnetoencephalographic analysis of periodic lateralized epileptiform discharges (PLEDs). Clin. Neurophysiol., 2000 Jan, 111(1): 122-127.PubMedCrossRefGoogle Scholar
  38. Huotilainen, M., Winkler, I., Alho, K., Escera, C., Virtanen, J., Ilmoniemi, R.J., Jaaskelainen I.P., Pekkonen E. and Naatannen, R. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr. Clin. Neurophysiol. 1998 Jul, 108(4): 370-379.PubMedCrossRefGoogle Scholar
  39. Hurley, R.A., Lewine, J.D., Jones, G.M., Orrison, W.W. Jr. and Taber, K.H. Application of magnetoencephalography to the study of autism. J. Neuropsychiatry Clin. Neurosci., 2000 Winter, 12(1): 1-3.PubMedGoogle Scholar
  40. Jorgenson, D.B., Schimpf, P.H., Shen, I., Johnson, G., Bardy, G.H., Haynor, D. and Kim, Y. Predicting cardiothoracic voltage during high nergy shocks: Methodology and comparison of experimental to finite element model data. IEEE Trans. Biomed. Eng., 1995 Jun, 42(6): 559-571.PubMedCrossRefGoogle Scholar
  41. Kincses, W.E., Braun, C., Kaiser, S. and Elbert, T. Modeling extended sources of event-related potentials using anatomical and physiological constraints. Hum. Brain Map+p., 1999, 8(4): 182-193.CrossRefGoogle Scholar
  42. Law, S. Thickness and resistivity variations over the upper surface of the human skull. Brain Topography, 1993, 6: 99-109.PubMedCrossRefGoogle Scholar
  43. Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier, G. Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum. Brain Mapp., 1998, 6(4): 250-269.PubMedCrossRefGoogle Scholar
  44. Mejis, J.W.H., Peters, M.J. and Oosterom, A. van. Computation of MEG's and EEG's using a realistically shaped multicompartment model of the head. Med. Biol. Engng. Comput., 1985, 23 (Suppl. Part 1): 36-37.Google Scholar
  45. Michel, C.M., Grave de Peralta, R., Lantz, G., Gonzalez Andino, S., Spinelli, L., blanke, O., Landis, T. and Seeck, M. Spaciotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J. Clin. Neurophysiol., 1999 May, 1693: 239-266.CrossRefGoogle Scholar
  46. Mosher, J.C. and Leahy, R.M. Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng., 1998 Nov, 45(11): 1342-1354.PubMedCrossRefGoogle Scholar
  47. Nakaura, A., Yamada, T., Goto, A., Kato, T., Ito, K., Abe, Y., Kachi, T. and Kakigi, R. Somatosensory Homunculus as drawn by MEG. Neuroimage, 1998 May, 7(4): 377-386.CrossRefGoogle Scholar
  48. Nunez, P.L. and Pilgreen, K.L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol., 1991 Oct, 8(4): 397-413.PubMedCrossRefGoogle Scholar
  49. Okada, Y.C., Lahteenmaki, A. and Xu, C. Experimental analysis of distortion of magnetoencephalography signals by skull. Clin. Neurophysiol., 1999 Feb, 110(2): 230-238.PubMedCrossRefGoogle Scholar
  50. Ollikainen, J.O., Vauhkonen, M., Karjalainen, P.A. and Kaipio, J.P. Effects of local skull inhomogeneities on EEG source estimation. Med. Eng. Phys., 1999 Apr, 21(3): 143-154.PubMedCrossRefGoogle Scholar
  51. Oostendorp, T.F., Delbeke, J. and Stegeman, D.F. The conductivity of the Human Skull: Results of In Vivo and In Vitro Measurements. IEEE Trans. Biomed. Eng., 2000, 47(11):.Google Scholar
  52. Pantev, C., Hoke, M., Lutkenhoner, B. and Lehnertz, K. Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science, 1989 Oct 27, 246(4929): 486-488.PubMedGoogle Scholar
  53. Pantev, C., Wollbrink, A., Roberts, L.E., Engelien, A. and Lutkenhoner, B. Short-term plasticity of the human auditory cortex. Brain Res., 1999 Sep 18, 842(1): 192-199.PubMedCrossRefGoogle Scholar
  54. Papanicolaou, A.C., Simos, P.G., Brier, J.I., Zouridakis, G., Willmore, L.J., Wheless, J.W., Constantinou, J.E., Maggio, W.W. and Gormley, W.B. J. Neurosurg., 1999 Jan, 90(1): 85-93.PubMedGoogle Scholar
  55. Pohlmeier, R., Buchner, H., Knoll, G., Rienäcker, A., Beckmann, R. and Pesch, J. The influence of skull — conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr., 1997 Spring, 9(3): 157-162.PubMedCrossRefGoogle Scholar
  56. Reite, M., Teale, P. and Rojas, D.C. Magnetoencephalography: applications in psychiatry. Biol. Psychiatry, 1999 Jun 15, 45(12): 1553-1563.PubMedCrossRefGoogle Scholar
  57. Ribary, U., Cappell, J., Mogilner, A., Hund-Georgiadis, M., Kronberg, E. and Llinas, R. Functional imaging of plastic changes in the humanbrain. Adv. Neurol., 1999, 81: 49-56.PubMedGoogle Scholar
  58. Ricci, G.B., Leoni, R., Romani, G.L., Campitelli, F., Buonomo, S. and Modena, I. 3-D Neuromagnetic localization of sources of interictal activity in cases of focal epilepsy. In: H. Weinberg, G. Stroink, T. Katila (Eds.), Biomagnetism: Applications and Theory. New York: Pergamon Press, 1985: 304-310.Google Scholar
  59. Romani, G.L., Williamson, S.J. and Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982, 216: 1339-1340.PubMedGoogle Scholar
  60. Rose, D.F., Smith, P.D. and Sato, S. Magnetoencephalography and epilepsy research. Science, 1987, 238: 329-335.PubMedGoogle Scholar
  61. Rush, S. and Driscoll, D.A. Current distribution in the brain from surface electrodes. Anesth. Analg. Nov.-Dec. 1968, 47(6): 717-723.PubMedCrossRefGoogle Scholar
  62. Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol., 1987, 32(1): 11-22.PubMedCrossRefGoogle Scholar
  63. Silva, C., Almeida, R., Oostendorp, T., Ducla-Soares, E., Foreid, J.P. and Pimentel, T. Interictal spike localization using a standard realistic head model: simulations and analysis of clinical data. Clin. Neurophysiol., 1999 May, 110(5): 846-855.PubMedCrossRefGoogle Scholar
  64. Simos, P.G., Breier, J.I., Maggio, W.W., Gormley, W.B., Zouridakis, G., Willmore, L.J., Wheless, J.W., Constantinou, J.E. and Papanicolaou, A.C. Atypical temporal lobe language reprentation: MEG and intraoperative stimulation mapping correlation. Neuroreport, 1999 Jan 18, 10(1): 139-142.PubMedGoogle Scholar
  65. Simos, P.G., Papnicolaou, A.C., Breier, J.I., Wheless, J.W., Constantinou, J.E., Gomley, W.B. and Maggio, W.W. J. Neurosurg., 1999 Nov, 91(5): 787-796.PubMedGoogle Scholar
  66. Sobel, D.F., Aung, M., Otsubo, H. and Smith, M.C. Magnetoencephalography in children with Landau-Kleffner syndrome and acquired epileptic aphasia. AJNR Am. J. Neuroradiol., 2000 Feb, 21(2): 301-307.PubMedGoogle Scholar
  67. Sperling, W., Vieth, J., Martus, M., Demling, J. and Barocka A. Spontaneous slow and fast MEG activity in male schizophrenics treated with clozapine. Psychopharmacology (Berl), 1999 Mar, 142(4): 375-382.CrossRefGoogle Scholar
  68. Stinstra, J.G. and Peters, M.J. The volume conductor may act as a temporal filter on the ECG and EEG. Med. Biol. Eng. Comput., 1998, 36: 711-716.PubMedGoogle Scholar
  69. Stock, C.J. The inverse problem in EEG and MEG with application to visual evoked responses. Thesis 1986.Google Scholar
  70. Sutherling, W.W., Crandall, P.H., Engel, J. Jr., Darcey, T.M., Cahan, L.D., Barth, D.S. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann. Neurol., 1987 Jun, 21(6): 548-558.PubMedCrossRefGoogle Scholar
  71. Sutherling, W.W., Crandal, P.H., Darcey, D.P., Becker, M.F., Levesque, M.F. and Barth, D.S. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology, 1988a Nov, 38(11): 1705-1714.PubMedGoogle Scholar
  72. Sutherling, W.W., Crandall, P.H., Cahan, L.D., Barth, D.S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy. Neurology, 1988b May, 38(5): 778-786.PubMedGoogle Scholar
  73. Sutherling, W.W., Risinger, M.W., Crandall, P.H., Becker, D.P., Baumgartner, C., Cahan, L.D., Wilson, C. and Levesque, M.F. Focal functional anatomy of dorsolateral frontocentral seizures. Neurology, 1990 Jan, 40(1): 87-98.PubMedGoogle Scholar
  74. Sutherling, W.W., Levesque, M.F., Crandall, P.H. and Barth, D.S. Localization of partial epilepsy using magnetic and electric measurements. Epilepsia, 1991, 32 Suppl 5: S29-40.PubMedGoogle Scholar
  75. Sutherling, W.W., Levesque, M.F. and Baumgartner, C. Cortical sensory representation of the human hand: size of finger regions and nonoverlapping digit somatotopy. Neurology, 1992 May, 42(5): 1020-1028.PubMedGoogle Scholar
  76. Tendolkar, I., Rugg, M., Fell, J., Vogt, H., Scholz, M., Hinrichs, H. and Heinze, H.J. A magnetoencephalographic study of brain activity related to recognition memory in healthy young human subjects. Neurosci. Lett., 2000 Feb 11, 280(1): 69-72.PubMedCrossRefGoogle Scholar
  77. Tesche, C.D. and Karhu, J. Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA, 2000 Jan 18, 97(2): 919-924.PubMedCrossRefGoogle Scholar
  78. van den Broek, S.P., Reiders, F., Donderwinkel, M. and Peters, M.J. Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol., 1998 Jun: 106.Google Scholar
  79. Volkmann, J. Oscillations of the human sensorimotor system as revealed by magnetoencephalography. Mov. Disord., 1998, 13 Suppl. 3: 73-76.PubMedGoogle Scholar
  80. Wheless, J.W., Willmore, L.J., Breier, J.I., Kataki, M., Smith, J.R., King, D.W., Meador, K.J., Park, Y.D., Loring, D.W., Clifton, G.L., Baumgartner, J., Thomas, A.B., Constantinou, J.E. and Papanicolaou, A.C. A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epilepsia, 1999 Jul, 40(7): 931-941.PubMedGoogle Scholar
  81. Wood, C.C., Cohen, D., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in the human somatosensory cortex: Identification by combined magnetic and electric potential recordings. Science, 1985, 227: 1051-1053.PubMedGoogle Scholar
  82. Wood, C.C., Spencer, D.D., Allison, T., McCarthy, G., Williamson, P.D. and Goff, W.R. Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J. Neurosurgery, 1988 Jan, 68(1): 99-111.CrossRefGoogle Scholar
  83. Yan, Y., Nunez, P.L. and Hart, R.T. Finite-element model of the human head: scalp potentials due to dipole sources. Med. Biol. Eng. Comput., 1991, 29: 475-481.PubMedCrossRefGoogle Scholar

Copyright information

© Human Sciences Press, Inc. 2002

Authors and Affiliations

  • M. Akhtari
    • 1
    • 2
  • H.C. Bryant
    • 1
  • A.N. Mamelak
    • 2
    • 11
  • E.R. Flynn
    • 3
  • L. Heller
    • 4
  • J.J. Shih
    • 5
    • 6
  • M. Mandelkem
    • 7
  • A. Matlachov
    • 8
  • D.M. Ranken
    • 9
  • E.D. Best
    • 9
  • M.A. DiMauro
    • 1
  • R.R. Lee
    • 10
  • W.W. Sutherling
    • 2
    • 11
  1. 1.Huntington Medical Research InstitutesPasadenaUSA
  2. 2.Department of Physics and AstronomyThe University of New MexicoAlbuquerqueUSA
  3. 3.Senior ScientificAlbuquerqueUSA
  4. 4.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA
  5. 5.Department of NeurologyThe University of New Mexico School of MedicineAlbuquerqueUSA
  6. 6.The University of New Mexico School of MedicineDepartment of NeurosciencesAlbuquerqueUSA
  7. 7.Department of PhysicsUniversity of California at IrvineIrvineUSA
  8. 8.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA
  9. 9.Scientific Software EngineeringLos Alamos National LaboratoryLos AlamosUSA
  10. 10.Department of RadiologyVA Medical CenterAlbuquerqueUSA
  11. 11.Epilepsy and Brain Mapping ProgramHuntington Memorial HospitalPasadenaUSA

Personalised recommendations