Applied Psychophysiology and Biofeedback

, Volume 27, Issue 1, pp 1–27 | Cite as

Heart Rate Variability Biofeedback as a Method for Assessing Baroreflex Function: A Preliminary Study of Resonance in the Cardiovascular System

  • Evgeny VaschilloEmail author
  • Paul Lehrer
  • Naphtali Rishe
  • Mikhail Konstantinov


This study describes the use of a biofeedback method for the noninvasive study of baroreflex mechanisms. Five previously untrained healthy male participants learned to control oscillations in heart rate using biofeedback training to modify their heart rate variability at specific frequencies. They were instructed to match computer-generated sinusoidal oscillations with oscillations in heart rate at seven frequencies within the range of 0.01–0.14 Hz. All participants successfully produced high-amplitude target-frequency oscillations in both heart rate and blood pressure. Stable and predictable transfer functions between heart rate and blood pressure were obtained in all participants. The highest oscillation amplitudes were produced in the range of 0.055–0.11 Hz for heart rate and 0.02–0.055 Hz for blood pressure. Transfer functions were calculated among sinusoidal oscillations in the target stimuli, heart rate, blood pressure, and respiration for frequencies at which subjects received training. High and low target-frequency oscillation amplitudes at specific frequencies could be explained by resonance among various oscillatory processes in the cardiovascular system. The exact resonant frequencies differed among individuals. Changes in heart rate oscillations could not be completely explained by changes in breathing. The biofeedback method also allowed us to quantity characteristics of inertia, delay, and speed sensitivity in baroreflex system. We discuss the implications of these findings for using heart rate variability biofeedback as an aid in diagnosing various autonomic and cardiovascular system disorders and as a method for treating these disorders.

biofeedback heart rhythm variability respiratory sinus arrhythmia baroreflex resonance Fourier filtration procedure transfer functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akselrod, S. (1988). Spectral analysis of fluctuations in cardio-vascular parameters: Quantitative tool for the investigation of autonomic control. Trends in Pharmacological Science, 9, 6–9.Google Scholar
  2. Akselrod, S., Gordon, D., Madwed, J. B., Snidman, N. C., Shannon, D. C., & Cohen, R. J. (1985). Hemodynamic regulation: Investigation by spectral analysis. American Journal of Physiology, 249 (Heart and Circulatory Physiology, 18), H867–H875.Google Scholar
  3. Badra, L. J., Cooke, W. H., Hoag, J. B., Crossman, A. A., Kuusela, T. A., Tahvanainen, K. U. O., & Eckberg, D. L. (2001). Respiratory modulation of human autonomic rhythms. American Journal of Physiology (Heart and Circulatory Physiology), 280, H2674–H2688.Google Scholar
  4. Berger, R. D., Saul, J. P., & Cohen, R. J. (1989). Transfer function analysis of autonomic regulation. 1. Canine a trial rate response. American Journal of Physiology, 256 (Heart and Circulatory Physiology, 25), H142–H152.Google Scholar
  5. Bernardi, L., Leuzzi, S., Radaelli, A., Passino, C., Johnston, J. A., & Sleight, P. (1994). Low frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: A baroreceptor or central phenomenon? Clinical Science, 87, 649–654.Google Scholar
  6. Bernardi, L., Rossi, M., Leuzzi, S., Mevio, E., Fornasari, G., Calciati, A., et al. (1997). Reduction of 0.1 Hz microcirculatory fluctuations as evidence of sympathetic dysfunction in insulin-dependent diabetes. Cardiovascular Research, 34, 185–191.Google Scholar
  7. Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.Google Scholar
  8. Brown, T. E., Beinghtol, L. A., Koh, J., & Eckberg, D. L. (1993). Important influence of respiration on human R-R interval power spectra is largely ignored. Journal of Applied Physiology, 75, 2310–2317.Google Scholar
  9. Chernigovskaya, N. V., Vaschillo, E. G., Petrash, V. V., & Rusanovsky, V. V. (1990). Voluntary regulation of the heart rate as a method of functional condition correction in neurotics. Human Physiology, 16, 58–64.Google Scholar
  10. Clynes, M. (1960). Respiratory sinus arrhythmia: Laws derived from computer simulation. Journal of Applied Physiology, 15, 863–874.Google Scholar
  11. Cooke, W. H., Ames IY, J. E., Crossman, A. A., Cox, J. P., Kuusela, T. A., Tahvanainen, K. U. O., et al. (2000). Nine months in space: Effects on human autonomic cardiovascular regulation. Journal of Applied Physiology, 89(3), 1039–1050.Google Scholar
  12. Cooke, W. H., Cox, J. P., Diedrich, A. M., Taylor, J. A., Beightol, L. A., Ames IY, J. E., et al. (1998). Controlled breathing protocols probe human autonomic cardiovascular rhythms. American Journal of Physiology, 274, H709–H718.Google Scholar
  13. DeBoer, R. W., Karemaker, J. M., & Strackee, J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in Humans: A beat-to-beat model. American Journal of Physiology, 253 (Heart and Circulatory Physiology, 22), H680–H689.Google Scholar
  14. Eckberg, D. L., & Eckberg, M. J. (1982). Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli. American Journal of Physiology, 242 (Heart and Circulatory Physiology, 11), H638–H644.Google Scholar
  15. Eckberg, D. L., & Sleight, P. (1992). Human baroreflexes in health and disease. Oxford: Clarendon Press.Google Scholar
  16. Eykhoff, P. (1974). System identification: Parameter and state estimation (p. 684). New York: Wiley-Interscience.Google Scholar
  17. Gevirtz, R. (1999). Resonance frequency training to restore autonomic homeostasis for treatment of psychophysiological disorders. Biofeedback, 4, 7–9.Google Scholar
  18. Giardino, N., Lehrer, P. M., & Feldman, J. (2000). The role of oscillations in self-regulation: Their contribution to homeostatis. In D. Kenney & F. J. McGuigan (Eds.), Stress and health: Research and clinical applications (pp. 27–52). Amsterdam: Harwood.Google Scholar
  19. Grodins, F. S. (1963). Control theory and biological systems (255 pp.) NewYork and London: Columbia University Press.Google Scholar
  20. Herbs, D., Gevirtz, R. N., & Jacobs, D. (1993). The effect of heart rate pattern biofeedback for the treatment of essential hypertension. First prize research paper at the 19th Biofeedback Society of California (November) meeting and Citation Poster at the 25th annual meeting of the Association for Applied Psychophysiology and Biofeedback, Atlanta, GA.Google Scholar
  21. Kirchheim, H. R. (1976). Systemic arterial baroreceptor reflexes. Physiology Reviews, 56, 100–176.Google Scholar
  22. Lehrer, P. M., Carr, R. E., Smetankine, A., Vaschillo, E. G., Peper, E., Porges, S., et al. (1997). Comparison of respiratory sinus arrhythmia and neck/trapezius EMG biofeedback for asthma: A pilot study. Applied Psychophysiology and Biofeedback, 22, 95–109.Google Scholar
  23. Lehrer, P. M., Sasaki, Y., & Saito, Y. (1999). Zazen and cardiac variability. Psychosomatic Medicine, 61, 812–821.Google Scholar
  24. Lehrer, P., Smetankin, A., & Potapova, T. (2000). Respiratory sinus arrhythmia biofeedback therapy for asthma: A report of 20 unmedicated pediatric cases using the Smetankin method. Applied Psychophysiology and Biofeedback, 25, 193–200.Google Scholar
  25. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25, 181–192.Google Scholar
  26. Malkin, V. B., & Gora, E. P. (1996). The participation of the respiration in the rhythmic interactions in the body. Success in Physiological Science, 27, 61–77.Google Scholar
  27. Murphy, G. J. (1957). Basic automatic control theory. Princeton, NJ: Van Nostrand.Google Scholar
  28. Penaz, J. (1992). Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiology Research, 41, 5–10.Google Scholar
  29. Saul, J. P., Berger, R. D., Albrecht, P., Stein, S. H., Chen, M. H., & Cohen, R. J. (1991). Transfer function analysis of the circulation: Unique insights into cardiovascular regulation. American Journal of Physiology, 261 (Heart and Circulatory Physiology, 30), H1231–H1245.Google Scholar
  30. Shusterman, V., Anderson, K. P., & Barnea, O. (1997). Spontaneous skin temperature oscillations in normal human subjects. American Journal of Physiology, 273, R1173–R1181.Google Scholar
  31. Sleight, P., La Rovere, M. T., Mortara, A., Pinna, G., Maestri, R., Leuzzi, S., et al. (1995). Physiology and pathophysiology of heart rate and blood pressure variability in humans: Is power spectral analysis largely an index of baroreflex gain? Clinical Science, 88, 103–109.Google Scholar
  32. Steptoe, A., & Sawada, Y. (1989). Assessment of baroreceptor reflex function during mental stress and relaxation. Psychophysiology, 26, 140–147.Google Scholar
  33. Task Force of the European Society of Cardiology and the North American Society of Racing and Electrophysiolog. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.Google Scholar
  34. Taylor, J. A., & Eckberg, D. L. (1996). Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation, 93, 1527–1532.Google Scholar
  35. Vaschillo, E. G. (1984). Dynamics of slow-wave cardiac rhythm structure as an index of functional state of an operant (p. 230). Doctoral dissertation. Saint Petersburg, Russia: Institute of Experimental Medicine.Google Scholar
  36. Vaschillo, E. G., Zingerman, A. M., Konstantinov, M. A., & Menitsky, D. N. (1983). Research of the resonance characteristics for cardiovascular system. Human Physiology, 9, 257–265.Google Scholar
  37. Wichterle, D., Melenovsky, V., Simek, J., Nekasova, L., Kautzner, J., & Malik, M. (2000). Cross-spectral analysis of heart rate and blood pressure modulations. Pace-Pacing and Clinical Electrophysiology, 23(9), 1425–1430.Google Scholar
  38. Zingerman, A. M., Konstantinov, M. A., Menitsky, D. N., Logvinov, V. S., & Vaschillo, E. G. (1988). Entropystatistical, spectral, conditionally-stochastic and determined characteristics of heart rate under different functional conditions of a person. Success in Physiological Science, 19, 40–55.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Evgeny Vaschillo
    • 1
    Email author
  • Paul Lehrer
    • 1
  • Naphtali Rishe
    • 3
  • Mikhail Konstantinov
    • 2
  1. 1.Department of PsychiatryUMDNJ – RW Johnson Medical SchoolPiscataway
  2. 2.The Pyotr Lesgaft Academy of Physical CultureSt. PetersburgRussia
  3. 3.Florida International UniversityMiami

Personalised recommendations