European Journal of Epidemiology

, Volume 17, Issue 6, pp 505–516 | Cite as

Use of multiple correspondence analysis and cluster analysis to study dietary behaviour: Food consumption questionnaire in the SU.VI.MAX. cohort

  • C. Guinot
  • J. Latreille
  • D. Malvy
  • P. Preziosi
  • P. Galan
  • S. Hercberg
  • M. Tenenhaus
Article

Abstract

Although the effects of individual foods or nutrients on the development of diseases and their risk factors have been investigated in many studies, little attention has been given to the effect of overall dietary patterns. The main objectives of this study were to identify dietary patterns and groups of subjects with similar food consumption habits, i.e. ‘dietary profiles’, using multiple correspondence analysis and cluster analysis. A food frequency questionnaire was sent to a large population-based sample (2923 women and 2180 men), recruited among the ‘SUpplémentation en VItamines et Minéraux AntioXydants’ (SU.VI.MAX.) cohort participants in France. The food items were dichotomised in order to focus the study on the highest levels of consumption. Multiple correspondence analysis allows the construction of principal components, which optimally summarise the data, and enables the construction of graphical displays. An interesting property of these graphical displays is that associations between food items can be observed on various projection planes, each category of each food item being located at the centre of gravity of the subjects corresponding to this category. An ascending hierarchical classification was unsuccessfully tried in order to determine clusters from these principal components. Therefore, a ‘dissection’ of the cloud of points was performed according to the orientation of the axes, providing a readily interpretable eight-dietary profiles typology for each sex. This statistical approach allows identification of particular dietary patterns and dietary profiles, which might be more appropriate in studies of diet-disease associations than the single food or nutrient approach that has dominated past epidemiological research.

Cluster analysis Dietary patterns Food consumption habits Food frequency questionnaire Multiple correspondence analysis Nutritional epidemiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levi F, Pasche C, La Vecchia C, Lucchini F, Franceschi S. Food groups and colorectal cancer risk. Br J Cancer 1999; 79: 1283–1287.Google Scholar
  2. 2.
    De Stefani E, Deneo-Pellegrini H, Mendilaharsu M, Ronco A. Diet and risk of cancer of the upper aerodigestive tract-I. Foods, Oral Oncol 1999; 35: 17–21.Google Scholar
  3. 3.
    Cameron ME, Van Staveren WA (eds), Manual on Methodology for Food Consumption Studies. Oxford: Oxford University Press, 1988.Google Scholar
  4. 4.
    Block G, Patterson B, Subar A. Fruit, vegetables and cancer prevention – a review of the epidemiological evidence. Nutr Can 1992; 18: 1–29.Google Scholar
  5. 5.
    Diaz MN, Frei B, Vita JA, Keaney JF. Antioxidants and atherosclerotic heart disease. New Engl J med 1997; 337: 408–410.Google Scholar
  6. 6.
    Malvy DJM, Burschy B, Arnaud J, et al. Serum betacarotene and antioxidant micronutrients in children with cancer. Int J Epidemiol 1993; 22: 761–771.Google Scholar
  7. 7.
    Ocke MC, Kaaks RJ. Biochemical markers as additional measurements in dietary validity studies – application of the methods of triads with examples from the European prospective Investigation into cancer and nutrition. Am J Clin Nutr 1997; 65: 1240S–1245S.Google Scholar
  8. 8.
    Malvy D. Biomarkers in nutrition epidemiology and prevention – the path between the laboratory and the population. Int J Vit Nutr Res 1996; 6613: 282–283.Google Scholar
  9. 9.
    Ferguson LR. Prospects for cancer prevention. Mut Res 1999; 428: 329–338.Google Scholar
  10. 10.
    Willet WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 1997; 65: 1220S–1228S.Google Scholar
  11. 11.
    Flegal KM. Evaluating epidemiologic evidence of the e.ects of food and nutrient exposures. Am J Clin Nutr 1999; 69: 1339S–1344S.Google Scholar
  12. 12.
    Ferguson LR. Micronutrients, dietary questionnaires and cancer. Biomed Pharmocother 1997; 51: 337–344.Google Scholar
  13. 13.
    Lebart L, Morineau, A, Wardwick KM. Multivariate Descriptive Statistical Analysis. New York: Wiley, 1984.Google Scholar
  14. 14.
    Jobson JD. Principal components, factors and correspondence analysis: In: Fienberg S, Olkin I (eds), Applied Multivariate Data Analysis. Volume II: Categorical and Multivariate Methods, Paris: Dunod, 1992: 343–482.Google Scholar
  15. 15.
    Tenenhaus M, Young FW. An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and others methods for quantifying categorical multivariate data. Psychometrikas 1985; 50: 91–119.Google Scholar
  16. 16.
    Hercberg S, Galan P, Preziosi P, et al. Background and rationale behind the SU.VI.MAX. study, a prevention trial using nutritional doses of a combination of antioxidant vitamins and minerals to reduce cardiovascular diseases and cancers. Int J Vit Nutr Res 1998; 68: 3–20.Google Scholar
  17. 17.
    Hercberg S, Preziosi P, Briançon S, et al. A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardio-vascular diseases and cancers in a general population: ‘The SU.VI.MAX. study’ – Design, methods and participants characteristic. Contr Clin Trials 1998; 19: 336–351.Google Scholar
  18. 18.
    Hercberg S, Hebel P, Preziosi P, Briançon S, Favier A, Galan P, Malvy D, Roussel AM, Schwartz L. Les motivations des volontaires réspondant à un appel pour participer à une étude d'intervention nutritionnelle: résultat d'un pré-test du project SU.VI.MAX. Revue Epidemiol Santé Publique 1995; 43: 139–146.Google Scholar
  19. 19.
    Levy PS. Missing data estimation, ‘Hot Deck’ and ‘Cold Deck’. In: Armitage P and Colton T (eds), Encyclopedia of Biostatistics, Chichester, UK: Wiley 1998; 2635–2637.Google Scholar
  20. 20.
    Wilkens LR and Lee J. Nutritional epidemiology. In: Armitage P and Colton T (eds), Encyclopedia of Biostatistics, Chichester UK: Wiley 1998; 3099–3117.Google Scholar
  21. 21.
    Milton RC. Quantiles. In: Armitage P and Colton T (eds), Encyclopedia of Biostatistics, Chichester, UK: Wiley, 1998; 3628–3629.Google Scholar
  22. 22.
    Benzecri JP. Sur le calcul des taux d'inertie dans l'analyse d'un questionnaire. Cahiers de l'analyse des données: 1979; 4: 377–378.Google Scholar
  23. 23.
    Everitt BS (eds), Cluster Analysis. London: Arnold, 1993.Google Scholar
  24. 24.
    SAS_ Institute Inc, eds. SAS/STAT User's guide, version 8. Cary, NC; SAS_ Institute Inc, 1999.Google Scholar
  25. 25.
    Byers T. The role of epidemiology in developing nutritional recommendations: Past present, and future. Am J Clin Nutr 1999; 69: 1304S–1308S.Google Scholar
  26. 26.
    Schulze MB, Hoffmann K, Kroke A, Boeing H. Dietary patterns and their association with food and nutrient intake in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Br J Nutr 2001; 85: 363–373.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • C. Guinot
    • 1
  • J. Latreille
    • 1
  • D. Malvy
    • 2
  • P. Preziosi
    • 3
  • P. Galan
    • 3
  • S. Hercberg
    • 3
  • M. Tenenhaus
    • 4
    • 5
  1. 1.CE.R.I.E.S., Neuilly Sur SeineFrance
  2. 2.INSERM U330University Victor Segalen Bordeaux 2BordeauxFrance
  3. 3.SU.VI.MAX. co-ordination, ISTNA, CNAMParisFrance
  4. 4.HEC School of management –Paris
  5. 5.Department SIAD, Jouy en JosasFrance

Personalised recommendations