Advertisement

Boundary-Layer Meteorology

, Volume 103, Issue 1, pp 101–124 | Cite as

Theory And Measurements For Turbulence Spectra And Variances In The Atmospheric Neutral Surface Layer

  • Ulf Högström
  • J. C. R. Hunt
  • Ann-Sofi Smedman
Article

Abstract

Predictions from a new theory for high Reynolds number turbulent boundary layers during near-neutral conditions are shown to agree well with measurements of atmospheric surface-layer variances and spectra. The theory suggests surface-layer turbulence is determined by detached eddies that largely originate in the shearing motion immediately above the surface layer; as they descend into this layer, they are strongly distorted by the local shear and impinge onto the surface. Because the origin of these eddies is non-local, they are similar to those described in previous studies as `inactive' turbulence. However, they are, in fact, dynamically highly active, supplying the major mechanism for the momentum transport, including upward bursting on the time scale of the larger eddies. The vertical velocity results show that the variance and the low frequency parts of spectra increase with height in the surface layer, while in the self similar (k1-1) range the streamwise low frequency components are approximately constant with height. These large-scale longitudinal eddies extend to a length Λs, which is equal to the boundary-layer height near the surface andincreases linearly to a maximum of about three times the boundary-layer height at roughly 15 m and decreases in the upper parts of the surface layer. This lower part of the surface layer, the eddy surface layer, is the region in which the eddies impinging from layers above are strongly distorted. This new result for the atmospheric boundary layer has practical application for calculating fluctuating wind loads on structures and lateral dispersion of pollution from local sources.

Coherent structures Impinging eddies Neutral surface layer Turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BASIS: 2000, Second Annual Report from the Meteorology Group, Uppsala University to the Euproject BALTIC-BASIS (Baltic Sea Ice Study), Contract No. MAS-CT97-0117.Google Scholar
  2. Bradshaw, P.: 1967L 'Inactive Motion and Pressure Fluctuations in Turbulent Boundary Layers', J. Fluid Mech. 30(Part 2), 241-258.Google Scholar
  3. Coelho, S. L. V. and Hunt, J. C. R.: 1989, 'Vorticity Dynamics in the near Field of Strong Jets in Crossflows', J. Fluid Mech. 200, 95-120.Google Scholar
  4. Davenport, A. G.: 1961, 'The Spectrum of Horizontal Gustiness near the Ground in High Wind Conditions', Quart. J. Roy. Meteorol. Soc. 87, 194-211.Google Scholar
  5. Dyer, A. J.: 1974, 'A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363-372.Google Scholar
  6. Falco, R. E.: 1982, 'A Synthesis and Model of Turbulence Structure in the Wall Region', in Zoran P. Zaric (ed.), Structure of Turbulence in Heat and Mass Transfer, Hemisphere Publ. Co., Washington.Google Scholar
  7. Foster, R. C.: 1997, 'Structure and Energetics of Optimal Ekman Layer Perturbations', J. FluidMech. 333, 97-123.Google Scholar
  8. Foster, R. C. and Drobinski, P.: 2000, 'Near-Surface Streaks: Comparison of LES with Theory', in Proceedings, 14th Symposium on Boundary Layers and Turbulence, Aspen, Co, 7-11 August, 2000, pp. 499-502Google Scholar
  9. Gage, K. S. and Nastrom, G. D.: 1986, 'Theoretical Interpretation of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft during GASP', J. Atmos. Sci. 43, 729-740.Google Scholar
  10. Geernaert, G. L. and Plant, W. J.: 1990, Surface Waves and Fluxes, Vol. 1, Current Theory, Kluwer Academic Publishers, Norwell, MA, 336 pp.Google Scholar
  11. Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, 'An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 97, 168-180.Google Scholar
  12. Högström, U.: 1982, 'A Critical Evaluation of the Aerodynamical Error of a Turbulence Instrument', J. Appl. Meteorol. 21, 1838-1844.Google Scholar
  13. Högström, U.: 1990, 'Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Theory Formulation for Neutral Conditions', J. Atmos. Sci. 47, 1949-1972.Google Scholar
  14. Högström, U.: 1992, 'Further Evidence of Inactive Turbulence in the Near Neutral Atmospheric Surface Layer', in Proceedings, 10th Symposium of Turbulence and Diffusion, 29 Sept.-2 Oct. 1992, Portland, OR, pp. 188-191.Google Scholar
  15. Högström, U. and Bergström, H.: 1996, 'Organized Turbulence Structures in the Near-Neutral Surface Layer', J. Atmos. Sci. 53, 2452-2464.Google Scholar
  16. Högström, U., Smedman, A., and Bergström, H.: 1999, 'A Case Study of Two-Dimensional Stratified Turbulence', J. Atmos. Sci. 56, 959-976.Google Scholar
  17. Högström, U., Bergström, H., Smedman, A., Halldin, S., and Lindroth, A.: 1989, 'Turbulent Exchange above a Pine Forest. I: Fluxes and Gradients', Boundary-Layer Meteorol. 49, 197-217.Google Scholar
  18. Hunt, J. C. R.: 1984, 'Turbulence Structure in Thermal Convection and Shear-Free Boundary Layers', J. Fluid Mech. 138, 161-184.Google Scholar
  19. Hunt, J. C. R. and Carlotti, P.: 2001, 'Statistical Structure of the High Reynolds Number Turbulent Boundary Layer', Flow, Turbulence, Combustion, in press.Google Scholar
  20. Hunt, J. C. R. and Durbin, P. A.: 1999, 'Perturbed Vortical Layers and Shear Sheltering', Fluid Dyn. Res. 24, 375-404.Google Scholar
  21. Hunt, J. C. R. and Morrison, J. F.: 2000, 'Eddy Structure in Turbulent Boundary Layers', Euro J. Mech. B-Fluids 19, 673-694.Google Scholar
  22. Hunt, J. C. R., Moin, P., Lee, M., Moser, R. D., Spalart, P., Mansour, N. N., Kaimal, J. C., and Gaynor, E.: 1989, 'Cross Correlations and Length Scales in Turbulent Flows near Surfaces', in H. Fiedler and H. Fernholtz (eds.), Advances in Turbulence, Vol. 2, Springer-Verlag, pp. 128-134.Google Scholar
  23. Johansson, C., Smedman, A., Högström, U., Brasseur, J. G., and Khanna, S.: 2001, 'Critical Test of Monin-Obukhov Similarity during Convective Conditions', J. Atmos. Sci. 58, 1549-1566.Google Scholar
  24. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, 'Spectral Characteristics of Surface-Layer Turbulence', Quart. J. Roy. Meteorol. Soc. 98, 563-589.Google Scholar
  25. Katul, G. and Chu, C.-R.: 1998, 'A Theoretical and Experimental Investigation on Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows', Boundary-Layer Meteorol. 86, 279-312.Google Scholar
  26. Kim, K. C. and Adrian, R. J.: 1999, 'Very Large-Scale Motion in the Outer Layer', Phys. Fluids 11, 417-422.Google Scholar
  27. Mann, J.: 1994, 'The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence', J. Fluid Mech. 273, 141-168.Google Scholar
  28. Marusic, I. and Perry, A. E.: 1995, 'AWake Model for the Turbulence Structure of Boundary Layers. Part 2. Further Experimental Support', J. Fluid Mech. 298, 389-407.Google Scholar
  29. Moeng, C.-H. and Sullivan, P. P.: 1994, 'A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flow', J. Atmos. Sci. 51, 999-1022.Google Scholar
  30. Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Vol. 1, English translation, The MIT Press, Cambridge, MA, 769 pp.Google Scholar
  31. Panofsky, H. A.: 1969, 'Spectra of Atmospheric Variables in the Boundary Layer', Radio Sci. 4, 1101-1109.Google Scholar
  32. Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, 'The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions', Boundary-Layer Meteorol. 11, 355-361.Google Scholar
  33. Perot, B. and Moin, P.: 1995, 'Shear-Free Turbulent Boundary Layers. Part 1. Physical Insights into Near-Wall Turbulence', J. Fluid Mech. 295, 199-227.Google Scholar
  34. Perry, A. E. and Abell, C. J.: 1977, 'Asymptotic Similarity of Turbulence Structures in Smooth-and Rough-Walled Pipes', J. Fluid Mech. 79, 785-789.Google Scholar
  35. Perry, A. E., Henbest, S., and Chong, M. S.: 1986, 'A Theoretical and Experimental Study of Wall Turbulence', J. Fluid Mech. 165, 163-199.Google Scholar
  36. Robinson, S. K.: 1991, The Kinematics of Turbulent Boundary Layer Structure, NASA Technical Memo. 103859, Ames Research Center, Moffet Field, CA, 479 pp.Google Scholar
  37. Sandham, N. D. and Kleiser, L.: 1992, 'The Late Stages of Transition to Turbulence in Channel Flow', J. Fluid Mech. 245, 319-348.Google Scholar
  38. Smedman, A.: 1991a, 'Some Turbulence Characteristics in Stable Atmospheric Boundary Layer Flow', J. Atmos. Sci. 48, 856-868.Google Scholar
  39. Smedman, A.: 1991b, 'Occurrence of Roll Circulations in a Shallow Boundary Layer', Boundary-Layer Meteorol. 57, 343-358.Google Scholar
  40. Smedman, A., Högström, U., Bergström, H., Rutgerson, A., Kahma, K. K., and Pettersson, H.: 1999, 'A Case Study of Air-Sea Interaction during Swell Conditions', J. Geophys. Res. 104, 25,833-25,851.Google Scholar
  41. Smedman, A., Tjernström, M., and Högström, U.: 1994: The Near-Neutral Marine Atmospheric Boundary Layer with No Surface Shearing Stress: A Case Study', J. Atmos. Sci. 51, 3399-3411.Google Scholar
  42. Smedman-Högström, A. and Högström, U.: 1975, 'Spectral Gap in Surface-Layer Measurements', J. Atmos. Sci. 32, 340-350.Google Scholar
  43. Smith, S. D. and Banke, E. G.: 1975, 'Variation of the Sea Surface Drag Coefficient with Wind Speed', Quart. J. Roy. Meteorol. Soc. 101, 665-673.Google Scholar
  44. Spalart, P. R.: 1988, 'Direct Numerical Simulation of a Turbulent Boundary Layer up to Re? = 1410', J. Fluid Mech. 187, 61-98.Google Scholar
  45. Tiederman, W. G.: 1989, 'Eulerian Detection of Turbulent Bursts', in S. J. Kline and N. H. Afgan (eds.), Near Wall Turbulence. Proceedings of the Z. Zoriac Memorial Conference 1988, Hemisphere, pp. 874-887.Google Scholar
  46. Townsend, A. A.: 1961, 'Equilibrium Layers and Wall Turbulence', J. Fluid Mech. 11, 97-120.Google Scholar
  47. Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, 2nd edn., Cambridge University Press, Cambridge, 429 pp.Google Scholar
  48. Wyngaard, J. C. and Coté, O. R.: 1972, 'Cospectral Similarity in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 98, 590-603.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ulf Högström
    • 1
  • J. C. R. Hunt
    • 2
    • 3
  • Ann-Sofi Smedman
    • 1
  1. 1.Department of Earth Sciences, MeteorologyUppsala UniversityUppsalaSweden
  2. 2.Departments of Space, Climate Physics and Geological SciencesUniversity CollegeLondon WC1U.K.
  3. 3.J.M. Burgers CentreDelft University of Technologythe Netherlands

Personalised recommendations