Virus Genes

, Volume 24, Issue 2, pp 135–147 | Cite as

Antigenic and Molecular Characterization of Recent Infectious Bursal Disease Virus Isolates in China

  • Jue Liu
  • Jiao Zhou
  • Jimmy Kwang


Eleven infectious bursal disease virus (IBDV) strains isolated recently from China were compared with the early classical virulent strain CJ801, the chicken embryo fibroblast-adapted (CEF) variant strain GZ902, and the attenuated vaccine strains BJ836, BK912, and LM to discern the evolutionary characteristics of IBDV in China at both antigenic and genetic levels. Virus neutralization (VN) assay showed that all ten very virulent (vv) IBDV strains belong to the same subtype as attenuated strains, whereas the other variant isolate strain BX could be attributed to other subtype of the variant strain GZ902. Antigen-capture ELISA (AC-ELISA) determined by a panel of monoclonal antibodies (Mabs) against classical and variant strains showed further that among these vv strains, nine strains except for strain NC had no reaction with neutralizing Mab B69. The vv strains SC and YV had no reaction with non-neutralizing Mabs 2B8 and 2C4, respectively, whose epitopes were located in classical IBDV strains. On the other hand, there is no alteration in antigenic epitopes located in the variant strain BX as that of the variant GZ902. Sequence comparison of the highly variable region (HVR) of the VP2 proteins showed that these vv strains had 98.6–100.0% identities to European and Asian vv strains at amino acid level. For the vv strains NC, SC, and YV, all had one amino acid substitution at the major hydrophilic domains, indicating that new vv strains are evolving. In addition, the vv strains DMS and NC had amino acid residue 279N as well, showing that the substitution of amino acid at this position might not be related to the virulence of IBDV. The variant strain BX had one amino acid substitution in the two major hydrophilic domains and two unique amino acids 249K and 254S as the other early variant strains, and shared 97.3% of amino acid identity to the variant strain VarE. Phylogenetic analysis suggests that the recent Chinese vvIBDVs and the previous European and Asian vv strains still belong to a genetic group and the variant strain BX to the other genetic group, which is more closely related to the European classical virulent strain F52/70 and the American classical virulent strain STC than to the early Chinese classical virulent strain CJ801, showing that the recent vv and variant strains that spread widely in the country might be derived from Europe and America than from early Chinese classical virulent strains.

antigenic variation highly variable region IBDV sequence analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lukert P.D. and Saif Y.M. (eds), Infectious Bursal Disease, in Diseases of Poultry. 10th, Iowa State University Press, pp. 721-738, 1997.Google Scholar
  2. 2.
    Saif Y.M., Vet Immunol Immunopathol 30, 45-50, 1991.Google Scholar
  3. 3.
    Ismail N.M., Saif Y.M., and Moorhead P.D., Avian Dis 32, 757-759, 1988.Google Scholar
  4. 4.
    Jackwood D.J. and Saif Y.M., Avian Dis 31, 766-770, 1987.Google Scholar
  5. 5.
    Snyder D.B., Vakharia V.N., and Savage P.K., Arch Virol 127, 89-101, 1992.Google Scholar
  6. 6.
    Chette N., Stuart J.C., and Wyeth P.J., Vet Rec 125, 291-272, 1989.Google Scholar
  7. 7.
    Van den Berg T.P., Gonze M., and Meulemans G., Avian Pathol 20, 133-143, 1991.Google Scholar
  8. 8.
    Eterradossi N., Picault J.P., Drouin P., Guittet M., L'Hospitalier R., and Bennejean G., J Vet Med B39, 683-691, 1992.Google Scholar
  9. 9.
    Tsukamoto K., Tanimura N., Hihara H., Shirai J., Imai K., Nakamura K., and Maeda M., J Vet Med Sci 54, 153-155, 1992.Google Scholar
  10. 10.
    Azad A.A., Jagadish M.N., Brown M.A., and Hudson P.J., Virology 161, 145-152, 1985.Google Scholar
  11. 11.
    Hudson P.J., McKern N.M., Power B.E., and Azad A.A., Nucleic Acids Res 14, 5001-5012, 1986.Google Scholar
  12. 12.
    Müller H. and Nitschke R., Virology 159, 174-177, 1987.Google Scholar
  13. 13.
    Mundt E., Beyer J., and Müller H., J Gen Virol 76, 437-443, 1995.Google Scholar
  14. 14.
    Spies U., Müller H., and Becht H., Virus Res 8, 127-140, 1987.Google Scholar
  15. 15.
    Spies U. and Müller H., J Gen Virol 71, 977-981, 1990.Google Scholar
  16. 16.
    Becht H., Müller H., and Müller H.K., J Gen Virol 69, 631-640, 1988.Google Scholar
  17. 17.
    Azad A.A., Jagadish M.N., Brown M.A., and Hudson P.J., Virology 161, 145-152, 1987.Google Scholar
  18. 18.
    Bayliss C.D., Spies U., Shaw K., Peters R.W., Papageorgiou A., Müller H., and Boursnell M.E.G., J Gen Virol 71, 1303-1312, 1990.Google Scholar
  19. 19.
    Heine H.G., Haritou M., Failla P., Fahey K., and Azad A., J Gen Virol 72, 1835-1843, 1991.Google Scholar
  20. 20.
    Schnitzler D., Bernstein F., Müller H., and Becht H., J Gen Virol 74, 1563-1571, 1993.Google Scholar
  21. 21.
    Vakharia V.N., He J., Ahamed B., and Snyder D.B., Virus Res 31, 265-273, 1994.Google Scholar
  22. 22.
    Van den Berg T.P., Gonze M., Morales D., and Meulemans G., Avian Pathol 25, 751-768, 1996.Google Scholar
  23. 23.
    Zhou J., Liu F.Z., Tao S.H., and Wang H.J., Chin J Vet Med 8, 25-26, 1982.Google Scholar
  24. 24.
    Li D.S., Wu Z., and Chan G., Chin J Husbandry Poult Pathol 6, 57-61, 1991.Google Scholar
  25. 25.
    Li S.G., Huang S., Lin Z., and Bi Y.Z., Chin J Husbandry Poult Pathol 5, 7-11, 1991.Google Scholar
  26. 26.
    Cao Y.C., Bi Y.Z., and Law M., Chin J Vet Med 9, 3-6, 1997.Google Scholar
  27. 27.
    Cao Y.C., Yeung W.S., Law M., Bi Y.Z., Leung F.C., and Lim B.L., Avian Dis 42, 340-351, 1998.Google Scholar
  28. 28.
    Chen H.Y., Zhou Q., Zhang M.F., and Giambrone J.J., Avian Dis 42, 762-769, 1998.Google Scholar
  29. 29.
    Liu J., Liu Y.C., and Zhou J., Chin J Vet Med 10, 39-41, 1997.Google Scholar
  30. 30.
    Lim B.L., Cao Y.C., Yu T., and Mo C.W., J Virology 73, 2854-2862, 1999.Google Scholar
  31. 31.
    Snyder D.B., Lana D.P., Savage P.K., Yancey F.S., Mengel S.A., and Marquardt W.W., Avian Dis 32, 535-539, 1988.Google Scholar
  32. 32.
    Tao S.H., We L., Xui Y.T., and Qian Y.R., Beijing Agr Sci 13, 15-17, 1995.Google Scholar
  33. 33.
    Eterradossi N., Toquin D., Rivallan G., and Guittet M., Arch Virol 142, 255-270, 1997.Google Scholar
  34. 34.
    Eterradossi N., Rivallan G., Toquin D., and Guittet M., Arch Virol 142, 2079-2087, 1997.Google Scholar
  35. 35.
    Eterradossi N., Arnauld C., Toquin D., and Rivallan G., Arch Virol 143, 1627-1636, 1998.Google Scholar
  36. 36.
    Pitcovski J., Goldberg D., Levi B.Z., DiCastro D., Azriel A., Krispel S., Maray T., and Shaaltiel Y., Avian Dis 42, 497-506, 1998.Google Scholar
  37. 37.
    Zierenberg K., Nieper H., van den Berg T.P., Ezeokoli C.D., Voß M., and Müller H., Arch Virol 145, 113-125, 2000.Google Scholar
  38. 38.
    Islam M.R., Zierenberg K., Eterradossi N., Toquin D., Rivallan G., and Müller H., J Vet Med B Infect Dis Vet Public Health 48, 211-221, 2001.Google Scholar
  39. 39.
    Ikuta N., El-Attrache J., Villegas P., Garcia E.M., Lunge V.R., Fonseca A.S., Oliveira C., and Marques E.K., Avian Dis 45, 297-306, 2001.Google Scholar
  40. 40.
    Jackwood D.J. and Jackwood R.J., Avian Dis 41, 97-104, 1997.Google Scholar
  41. 41.
    Yamaguchi T., Ogawa M., Inoshima Y., Mitoshi M., Fukushi H., and Hirai K., Virology 223, 219-223, 1996.Google Scholar
  42. 42.
    Sapats S.I. and Ignjatovic J., Arch Virol 145, 773-785, 2000.Google Scholar
  43. 43.
    Dormitorio T.V., Giambrone J.J., and Duck L.W., Avian Dis 41, 36-44, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jue Liu
    • 1
  • Jiao Zhou
    • 2
  • Jimmy Kwang
    • 1
  1. 1.Animal Health Biotechnology Laboratory, Institute of Molecular AgrobiologyThe National University of SingaporeSingapore
  2. 2.Institute of Animal Husbandry and Veterinary MedicineBeijing Municipal Academy of Agriculture and Forestry Sciences, BanjingHaidian District, BeijingP. R. China

Personalised recommendations