Boundary-Layer Meteorology

, Volume 103, Issue 2, pp 205–226 | Cite as

A Three-Dimensional Backward Lagrangian Footprint Model For A Wide Range Of Boundary-Layer Stratifications



We present a three-dimensional Lagrangian footprint model with the ability to predict the area of influence (footprint) of a measurement within a wide range of boundary-layer stratifications and receptor heights. The model approach uses stochastic backward trajectories of particles and satisfies the well-mixed condition in inhomogeneous turbulence for continuous transitions from stable to convective stratification. We introduce a spin-up procedure of the model and a statistical treatment of particle touchdowns which leads to a significant reduction of CPU time compared to conventional footprint modelling approaches. A comparison with other footprint models (of the analytical and Lagrangian type) suggests that the present backward Lagrangian model provides valid footprint predictions under any stratification and, moreover, for applications that reach across different similarity scaling domains (e.g., surface layer to mixed layer, for use in connection with aircraft measurements or with observations on high towers).

Backward trajectories Boundary-layer stability Density kernel estimation Lagrangian particle model Source area Spin-up 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerentsen, J. H. and Berkowicz, R.: 1984, 'Monte Carlo Simulation of Plume Dispersion in the Convective Boundary Layer', Atmos. Environ. 18, 701-712.Google Scholar
  2. de Haan, P.: 1999, 'On the Use of Density Kernels for Concentration Estimations within Particle and Puff Dispersion Models', Atmos. Environ. 33, 2007-2021.Google Scholar
  3. de Haan, P. and Rotach, M. W.: 1998, 'A Novel Approach to Atmospheric Dispersion Modelling: The Puff-Particle Model (PPM)', Quart. J. Roy. Meteorol. Soc. 124, 2771-2792.Google Scholar
  4. Du, S.: 1995, 'Estimation of the Kolmogorov Constant C0) for the Lagrangian Structure Function, Using a Second-Order Lagrangian Model of Grid Turbulence', Phys. Fluids 7, 3083-3090.Google Scholar
  5. Du, S.: 1997, 'Universality of the Lagrangian Velocity Structure Function Constant (C 0) across Different Kinds of Turbulence', Boundary-Layer Meteorol. 83, 207-219.Google Scholar
  6. Finn, D., Lamb, B., Leclerc, M. Y., and Horst, T. W.: 1996, 'Experimental Evaluation of Analytical and Lagrangian Surface-Layer Flux Footprint Models', Boundary-Layer Meteorol. 80, 283-308.Google Scholar
  7. Flesch, T. K.: 1996, 'The Footprint for Flux Measurements, from Backward Lagrangian Stochastic Models', Boundary-Layer Meteorol. 78, 399-404.Google Scholar
  8. Flesch, T. K., Wilson, J. E., and Yee, E.: 1995, 'Backward-Time Langrangian Stochastic Dispersion Models and their Application to Estimate Gaseous Emissions', J. Appl.Meteorol. 34, 1320-1332.Google Scholar
  9. Forrer, J. and Rotach, M. W.: 1997, 'On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet', Boundary-Layer Meteorol. 85, 111-136.Google Scholar
  10. Gryning, S.-E. 1999, 'Some Aspects of Atmospheric Dispersion in the Stratified Atmospheric Boundary Layer over Homogeneous Terrain', Boundary-Layer Meteorol. 90, 479-494.Google Scholar
  11. Gryning, S.-E., Holtslag, A. A. M., Irwin, J. S., and Sivertsen, B.: 1987, 'Applied Dispersion Modelling Based on Meteorological Scaling Parameters', Atmos. Environ. 21, 79-89.Google Scholar
  12. Horst, T.W.: 1999, 'The Footprint for Estimation of Atmosphere-Surface Exchange Fluxes by Profile Techniques', Boundary-Layer Meteorol. 90, 171-188.Google Scholar
  13. Horst, T. W. and Weil, J. C.: 1992, 'Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 90, 171-188.Google Scholar
  14. Horst, T. W. and Weil, J. C.: 1994, 'How Far Is Far Enough?: The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes', J. Atmos. Ocean. Tech. 11, 1018-1025.Google Scholar
  15. Kljun, N., Rotach, M.W., and Schmid, H. P.: 1999, 'Allocation of Surface Sources Using "Backward Trajectory"-Simulations', in preprint, 13th Symposium on Boundary Layers and Turbulence, Dallas, TX, American Meteorological Society, Boston, MA, pp. 187-188.Google Scholar
  16. Kljun, N., de Haan, P., Rotach, M. W., and Schmid, H. P.: 2000a, 'Footprint Determination in Stable to Convective Stratification Using an Inverse 3D Lagrangian Particle Model', in preprint, 24th Conference on Agricultural and Forest Meteorology, Davis, CA, American Meteorological Society, Boston, MA, pp. 156-157.Google Scholar
  17. Kljun, N., Rotach, M. W., and Schmid, H. P.: 2000b, 'A Lagrangian Footprint Model for Stratifications Ranging from Stable to Convective', in preprint, 14th Symposium on Boundary Layers and Turbulence, Aspen, CO, American Meteorological Society, Boston, MA, pp. 130-132.Google Scholar
  18. Leclerc, M. Y. and Thurtell, G. W.: 1990, 'Footprint Prediction of Scalar Fluxes Using a Markovian Analysis', Boundary-Layer Meteorol. 52, 247-258.Google Scholar
  19. Leclerc, M. Y., Shen, S., and Lamb, B.: 1997, 'Observations and Large-Eddy Simulation Modeling of Footprints in the Lower Convective Boundary Layer', J. Geophys. Res. 102, 9323-9334.Google Scholar
  20. Luhar, A. K. and Rao, K. S.: 1994, 'Source Footprint Analysis for Scalar Fluxes Measured in Flows over an Inhomogeneous Surface', Air Pollut. Model. Appl. X, 315-322.Google Scholar
  21. Mason, P. J.: 1992, 'Large-Eddy Simulation of Dispersion in Convective Boundary Layers withWind Shear', Atmos. Environ. 26A, 1561-1571.Google Scholar
  22. Physick, W. L., Noonan, J. A., McGregor, J. L., Abbs, D. J., and Manins, P. C.: 1994, LADM: A Lagrangian Atmospheric Dispersion Model, Technical Report 24, CSIRO Division of Atmospheric Research, Australia, 137 pp.Google Scholar
  23. Rannik, U., Aubinet, M., Kurbanmuradov, O., Sabelfeld, K. K., Markkanen, T., and Vesala, T.: 2000, 'Footprint Analysis for Measurements over a Heterogeneous Forest', Boundary-Layer Meteorol. 97, 137-166.Google Scholar
  24. Rotach, M. W., Gryning, S.-E., and Tassone, C.: 1996, 'A Two-Dimensional Lagrangian Stochastic Dispersion Model for Daytime Conditions', Quart. J. Roy. Meteorol. Soc. 122, 367-389.Google Scholar
  25. Schmid, H. P.: 1994, 'Source Areas for Scalars and Scalar Fluxes', Boundary-Layer Meteorol. 67, 293-318.Google Scholar
  26. Schmid, H. P.: 1997, 'Experimental Design for FluxMeasurements: Matching Scales of Observations and Fluxes', Agric. For. Meteorol. 87, 179-200.Google Scholar
  27. Schmid, H. P.: 2002, 'Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective', Agric. For. Meteorol. (Special Issue on FLUXNET), in press.Google Scholar
  28. Schmid, H. P. and Oke, T. R.: 1990, 'A Model to Estimate the Source Area Contributing to Turbulent Exchange in the Surface Layer over Patchy Terrain', Quart. J. Roy. Meteorol. Soc. 16, 965-988.Google Scholar
  29. Schuepp, P. H., Leclerc, M. Y., Macpherson, J. I., and Desjardins, R. L.: 1990, 'Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation', Boundary-Layer Meteorol. 50, 355-373.Google Scholar
  30. Shaw, R. H., Tavangar, J., and David, P. W.: 1983, 'Structure of the Reynolds Stress in a Canopy Layer', J. Clim. Appl. Meteorol. 22, 1922-1931.Google Scholar
  31. Thomson, D. J.: 1987, 'Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows', J. Fluid Mech. 180, 529-556.Google Scholar
  32. Van Ulden, A. P.: 1978, 'Simple Estimates for Vertical Diffusion from Sources near the Ground', Atmos. Environ. 12, 2125-2129.Google Scholar
  33. Willis, G. E. and Deardorff, J. W.: 1976, 'A Laboratory Model of Diffusion into the Convective Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 102, 427-445.Google Scholar
  34. Willis, G. E. and Deardorff, J. W.: 1978, 'A Laboratory Study of Dispersion from an Elevated Source within a Modelled Convective Planetary Boundary Layer', Atmos. Environ. 12, 1305-1311.Google Scholar
  35. Willis, G. E. and Deardorff, J. W.: 1981, 'A Laboratory Study of Dispersion from a Source in the Middle of the Convective Layer', Atmos. Environ. 15, 109-117.Google Scholar
  36. Wilson, J. D. and Swaters, G. E.: 1991, 'The Source Area Influencing aMeasurement in the Planetary Boundary Layer: The "Footprint" and the "Distribution of Contact Distance"', Boundary-Layer Meteorol. 55, 25-46.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate Science ETHZurichSwitzerland
  2. 2.Institute for Atmospheric and Climate Science ETHZurichSwitzerland
  3. 3.Department of GeographyIndiana UniversityBloomingtonU.S.A

Personalised recommendations