Advertisement

Advances in Computational Mathematics

, Volume 16, Issue 4, pp 331–356 | Cite as

Multigrid Computation of Axisymmetric Electromagnetic Fields

  • S. Börm
  • R. Hiptmair
Article

Abstract

The focus of this paper is on boundary value problems for Maxwell's equations that feature cylindrical symmetry both of the domain Ω⊂R3 and the data. Thus, by resorting to cylindrical coordinates, a reduction to two dimensions is possible. However, cylindrical coordinates introduce a potentially malicious singularity at the axis rendering the variational problems degenerate. As a consequence, the analysis of multigrid solvers along the lines of variational multigrid theory confronts severe difficulties. Line relaxation in radial direction and semicoarsening can successfully reign in the degeneracy. In addition, the lack of H1-ellipticity of the double-curl operator entails using special hybrid smoothing procedures. All these techniques combined yield a fast multigrid solver. The theoretical investigation of the method relies on blending generalized Fourier techniques and modern variational multigrid theory. We first determine invariant subspaces of the multigrid iteration operator and analyze the smoothers therein. Under certain assumptions on the material parameters we manage to show uniform convergence of a symmetric V-cycle.

computational electromagnetism multigrid edge elements vector valued problems semi-coarsening cylindrical symmetry degenerate problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Arnold, R. Falk and R. Winther, Preconditioning in H(div) and applications, Math. Comp. 66 (1997) 957-984.Google Scholar
  2. [2]
    D. Arnold, R. Falk and R. Winther, Multigrid in H(div) and H( curl ), Numer. Math. 85 (2000) 175-195.Google Scholar
  3. [3]
    R. Beck, P. Deuflhard, R. Hiptmair, R. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations, Surveys Math. Indust. 8 (1998) 271-312.Google Scholar
  4. [4]
    S. Börm and R. Hiptmair, Analysis of tensor product multigrid, Numer. Algorithms 26 (2001) 219-234.Google Scholar
  5. [5]
    A. Bossavit, A new viewpoint on mixed elements, Meccanica 27 (1992) 3-11.Google Scholar
  6. [6]
    D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including the V-cycle, SIAM J. Numer. Anal. 20 (1983) 967-975.Google Scholar
  7. [7]
    J. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics Series, Vol. 294 (Longman, London, 1993).Google Scholar
  8. [8]
    J. Bramble and J. Pasciak, The analysis of smoothers for multigrid algorithms, Math. Comp. 58 (1992) 467-488.Google Scholar
  9. [9]
    J. Bramble, J. Pasciak and J. Xu, The analysis of multigrid algorithms with non-nested spaces or non-inherited quadratic forms, Math. Comp. 56 (1991) 1-34.Google Scholar
  10. [10]
    P. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4 (North-Holland, Amsterdam, 1978).Google Scholar
  11. [11]
    F. Cooray and G. Costache, An overview of the absorbing boundary conditions, J. Electromagn.Waves Appl. 5 (1991) 1041-1054.Google Scholar
  12. [12]
    J. Dendy and C. Tazartes, Grandchild of the frequency decomposition multigrid method, SIAM J. Sci. Comput. 2 (1995) 307-319.Google Scholar
  13. [13]
    R. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite element methods, Math. Modelling Numer. Anal. 26 (1992) 739-756.Google Scholar
  14. [14]
    P. Grisvard, Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22 (Springer, New York, 1992).Google Scholar
  15. [15]
    W. Hackbusch, Multi-grid Methods and Applications (Springer, Berlin, 1985).Google Scholar
  16. [16]
    W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen (Teubner, Stuttgart, 1986).Google Scholar
  17. [17]
    W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Vol. 95 (Springer, New York, 1993).Google Scholar
  18. [18]
    W. Hackbusch, The frequency decomposition multi-grid method, in: Multigrid Methods IV. Proc. of the 4th European Multigrid Conf., Amsterdam, Netherlands, 6-9 July 1993, ed. P. Hemker (Birkhäuser, Basel, 1994) pp. 43-56.Google Scholar
  19. [19]
    R. Hiptmair, Multigrid method for H(div) in three dimensions, ETNA 6 (1997) 133-152.Google Scholar
  20. [20]
    R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal. 36 (1999) 204-225.Google Scholar
  21. [21]
    R. Hiptmair and A. Toselli, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions, in: Parallel Solution of Partial Differential Equations, eds. P. Bjorstad and M. Luskin, IMA Volumes in Mathematics and its Applications, Vol. 120 (Springer, Berlin, 1999) pp. 181-202.Google Scholar
  22. [22]
    J. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Internat. J. Comput. Math. Appl. 33 (1997) 81-104.Google Scholar
  23. [23]
    K. Mahadevan and R.Mitta, Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equations, J. Electromagn. Waves Appl. 8 (1994) 1173-1191.Google Scholar
  24. [24]
    G. Makridakis and P. Monk, Time-discrete finite element schemes for Maxwell's equations, RAIRO Math. Modelling Numer. Anal. 29 (1995) 171-197.Google Scholar
  25. [25]
    D. Mavriplis, Directional coarsening and smoothing for anisotropic Navier-Stokes problems, Electron. Trans. Numer. Anal. 6 (1997) 182-197.Google Scholar
  26. [26]
    P. Monk, A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal. 28 (1991) 1610-1634.Google Scholar
  27. [27]
    P. Monk, Analysis of a finite element method for Maxwell's equations, SIAM J. Numer. Anal. 29 (1992) 714-729.Google Scholar
  28. [28]
    P. Monk, A comparison of three mixed methods for the time dependent Maxwell equations, SIAM J. Sci. Statist. Comput. 13 (1992) 1097-1122.Google Scholar
  29. [29]
    P. Monk and E. Süli, A convergence analysis of Yee's scheme on nonuniform grids, SIAM J. Numer. Anal. 31 (1994) 393-412.Google Scholar
  30. [30]
    P. Monk and S. Zhang, Multigrid computation of vector potentials, J. Comput. Appl. Math. 62 (1995) 301-320.Google Scholar
  31. [31]
    W. Mulder, A new multigrid approach to convection problems, J. Comput. Phys. 83 (1989) 303-323.Google Scholar
  32. [32]
    J. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341.Google Scholar
  33. [33]
    J. Nédélec, A new family of mixed finite elements in R3, Numer. Math. 50 (1986) 57-81.Google Scholar
  34. [34]
    C. Oosterlee, F. Gaspar, T.Washio and R.Wienands, Multigrid line smoothers for higher order upwind discretizations of convection dominated problems, J. Comput. Phys. 139 (1998) 274-307.Google Scholar
  35. [35]
    C. Pflaum, A robust multilevel algorithm for anisotropic elliptic equations, Technical Report 224, Mathematisches Institut, Universität Würzburg, Würzbug, Germany (1998).Google Scholar
  36. [36]
    C. Pflaum, Fast and robust multilevel algorithms, Habilitationsschrift, Mathematische Institute, Universität Würzburg, Würzburg, Germany (1999).Google Scholar
  37. [37]
    P. Raviart and W. Sonnendrücker, A hierarchy of approximate models for the Maxwell equations, Numer. Math. 73 (1996) 329-372.Google Scholar
  38. [38]
    J. Schöberl, Multigrid methods for parameter dependent problems I: The Stokes-type case, in: Proc. of the 5th European Multigrid Conf., Vol. 199, eds. W. Hackbusch and G. Wittum (Springer, 1998) to appear.Google Scholar
  39. [39]
    J. Schöberl, Multigrid methods for a parameter dependent problem in primal variables, Numer. Math. 84 (1999) 97-119.Google Scholar
  40. [40]
    B. Smith, P. Bjørstad and W. Gropp, Domain Decomposition (Cambridge Univ. Press, Cambridge, 1996).Google Scholar
  41. [41]
    A. Taflove, The Finite Difference in Time Domain Method (Artech House, Boston/London, 1995).Google Scholar
  42. [42]
    P. Vassilevski and J. Wang, Multilevel iterative methods for mixed finite element discretizations of elliptic problems, Numer. Math. 63 (1992) 503-520.Google Scholar
  43. [43]
    T. Washio and C. Oosterlee, Flexible multiple semicoarsening for 3-dimensional singularly perturbed problems, SIAM J. Sci. Comput. 19 (1998) 1646-1666.Google Scholar
  44. [44]
    T. Weiland, Time domain electromagnetic field computation with finite difference methods, Internat. J. Numer. Modelling 9 (1996) 295-319.Google Scholar
  45. [45]
    P. Wesseling, An Introduction to Multigrid Methods (Wiley, Chichester, 1992).Google Scholar
  46. [46]
    J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review 34 (1992) 581-613.Google Scholar
  47. [47]
    K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagation 16 (1966) 302-307.Google Scholar
  48. [48]
    H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numerica (1993) 285-326.Google Scholar
  49. [49]
    X. Zhang, Multilevel Schwarz methods, Numer. Math. 63 (1992) 521-539.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S. Börm
    • 1
  • R. Hiptmair
    • 2
  1. 1.Institut für Praktische MathematikUniversität KielGermany
  2. 2.Sonderforschungsbereich 382Universität TübingenGermany

Personalised recommendations