Advertisement

Brain Topography

, Volume 14, Issue 3, pp 197–213 | Cite as

Dynamics of Brain Activation During an Explicit Word and Image Recognition Task: An Electrophysiological Study

  • Asaid Khateb
  • Alan J. Pegna
  • Christoph M. Michel
  • Theodor Landis
  • Jean-Marie Annoni
Article

Abstract

Recent brain imaging studies suggest that semantic processing of words and images may share a common neural network, although modality-specific activation can also be observed. Other studies using event-related potentials (ERPs) report that brain responses to words and images may already differ at ~150 ms following stimulus presentation. The question thus remains, which differences are due to perceptual categorization processes and which differences are due to the semantic ones? Using ERP recordings and spatio-temporal source localization analysis, we investigated the dynamics of brain activation during a recognition task. The stimuli consisted of a randomized set of verbal (words vs. non-words) and pictorial items (line drawings of objects vs. scrambled drawings). After each stimulus, subjects had to decide whether it corresponds to a recognizable word or objects. ERP map series were first analyzed in terms of segments of quasi-stable map topography using a cluster analysis. This showed that verbal and pictorial stimuli elicited different field patterns in two time segments between ~190-400 ms. Before and after this period, map patterns were similar between verbal and pictorial conditions indicating that the same brain structures were engaged during the early and late steps of processing. Source localization analysis of map segments corresponding to the P100 and the N150 components first showed activation of posterior bilateral regions and then of left temporo-posterior areas. During the period differentiating conditions, other patterns of activation, involving mainly left anterior and posterior regions for words and bilateral posterior regions for images, were observed. These findings suggest that, while sharing an initial common network, recognition of verbal and pictorial stimuli subsequently engage different brain regions during time periods generally allocated to the semantic processing of stimuli.

Event-related potentials Map series Human brain mapping Temporal segmentation Source localization Distributed source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderer, P., Pascual-Marqui, R.D., Semlitsch, H.V. and Saletu, B. Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA). Electroenceph. Clin. Neurophysiol. Evoked Potentials, 1998, 108: 160-174.CrossRefGoogle Scholar
  2. Bentin, S., McCarthy, G. and Wood, C.C. Event-related potentials, lexical decision and semantic priming. Electroenceph. Clin. Neurophysiol., 1985, 60: 343-355.PubMedCrossRefGoogle Scholar
  3. Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M. and Prieto, T. Human brain language areas identified by functional magnetic resonance imaging. J. Neurosci., 1997, 17: 353-362.PubMedGoogle Scholar
  4. Brandeis, D., Lehmann, D., Michel, C.M. and Mingrone, W. Mapping event-related brain potential microstates to sentence endings. Brain Topogr., 1995, 8: 145-159.PubMedCrossRefGoogle Scholar
  5. Brandeis, D., van Leeuwen, T.H., Rubia, K., Vitacco, D., Dteger, J., Pascual-Marqui, R.D. and Steinhausen, H.C. Neuroelectric mapping reveals precursor of stop failures in children with attention deficits. Behav. Brain Res., 1998, 94: 111-125.PubMedCrossRefGoogle Scholar
  6. Brandeis, D. and Lehmann, D. Event-related potentials of the brain and cognitive processes: approaches and applications. Neuropsychologia, 1986, 24: 151-168.PubMedCrossRefGoogle Scholar
  7. Carlesimo, G.A., Casadio, P., Sabbadini, M. and Caltagirone, C. Associative visual agnosia resulting from a disconnection between intact visual memory and semantic systems. Cortex, 1998, 34: 563-576.PubMedGoogle Scholar
  8. Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M.A. and Michel, F. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 2000, 123: 291-307.PubMedCrossRefGoogle Scholar
  9. Demb, J.B., Desmond, J.E., Wagner, A.D., Vaidya, C.J., Glover, G.H. and Gabrieli, J.D. Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. J. Neurosci., 1995, 15: 5870-5878.PubMedGoogle Scholar
  10. Démonet, J.F., Cholet, F., Ramsay, S., Cardebat, D., Nespoulous, J.L., Wise, R., Rascol, A. and Frackowiak, R. The anatomy of phonological and semantic processing in normal subjects. Brain, 1992, 115: 1753-1768.PubMedGoogle Scholar
  11. Doniger, G.M., Foxe, J.J., Murray, M.M., Higgins, B.A., Snodgrass, J.G. and Schroeder, C.E. Activation timecourse of ventral visual stream object-recognition areas: high density electrical mapping of perceptual closure processes. J. Cogn. Neurosci., 2000, 12: 615-621.PubMedCrossRefGoogle Scholar
  12. Fallgatter, A.J., Brandeis, D. and Strik, W.K. A robust assessment of the NoGo-anteriorisation of P300 microstates in a cued Continuous Performance Test. Brain Topogr., 1997, 9: 295-302.PubMedCrossRefGoogle Scholar
  13. Feinberg, T.E., Schindler, R.J., Ochoa, E., Kwan, P.C. and Farah, M.J. Associative visual agnosia and alexia without prosopagnosia. Cortex, 1994, 30: 395-411.PubMedGoogle Scholar
  14. Feinberg, T.E., Dyckes-Berke, D., Miner, C.R. and Roane, D.M. Knowledge, implicit knowledge and metaknowledge in visual agnosia and pure alexia. Brain, 1995, 118: 789-800.PubMedGoogle Scholar
  15. Fletcher, E.M., Kussmaul, C.L. and Mangun, G.R. Estimation of interpolation errors in scalp topographic mapping. Electroenceph. Clin. Neurophysiol., 1996, 98: 422-434.PubMedCrossRefGoogle Scholar
  16. Frost, J.A., Binder, J.R., Springer, J.A., Hammeke, T.A., Bellgowan, P.S., Rao, S.M. and Cox, R.W. Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain, 1999, 122: 199-208.Google Scholar
  17. George, J.S., Aine, C.J., Mosher, C., Schmidt, M.D., Ranken, D.M., Schlitt, H.A., Wood, C.C., Lewine, J.D., Sanders, J.A. and Belliveau, J.W. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J. Clin. Neurophysiol., 1995, 12: 406-431.PubMedCrossRefGoogle Scholar
  18. Grave de Peralta-Menendez, R. and Gonzalez-Andino, S.L. A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Trans. Biomed. Eng., 1998, 45: 440-448.PubMedCrossRefGoogle Scholar
  19. Khateb, A., Annoni, J.M., Landis, T., Pegna, A.J., Custodi, M.C., Fonteneau, E., Morand, S.M. and Michel, C.M. Spatio-temporal analysis of electric brain activity during semantic and phonological word processing. Int. J. Psychophysiol., 1999, 32: 215-231.PubMedCrossRefGoogle Scholar
  20. Khateb, A., Michel, C.M., Pegna, A.J., Landis, T. and Annoni, J.M. New insights into the Stroop effect: a spatio-temporal analysis of electric brain activity. Neuroreport, 2000, 11: 1849-1855.PubMedGoogle Scholar
  21. Khateb, A., Michel, C.M., Pegna, A.J., Landis, T. and Annoni, J.M. Dynamics of brain activation during a word and image recognition task: An electrophysiological study. Neuroimage, 2001a, 13: S550 (Abstract).CrossRefGoogle Scholar
  22. Khateb, A., Michel, C.M., Pegna, A.J., Thut, G., Landis, T. and Annoni, J.M. The time course of semantic category processing in the cerebral hemispheres: an electrophysiological study. Cogn. Brain Res., 2001b, 9: 251-264.CrossRefGoogle Scholar
  23. Koenig, T., Kochi, K. and Lehmann, D. Event-related electric microstates of the brain differ between words with visual and abstract meaning. Electroenceph. Clin. Neurophysiol., 1998, 106: 535-546.PubMedCrossRefGoogle Scholar
  24. Koles, Z.J., Flor-Henry, P. and Lind, J.C. Low resolution electrical tomography of the brain during psychometrically matched verbal and spatial cognitive tasks. Hum. Brain Map., 2001, 12: 144-156.CrossRefGoogle Scholar
  25. Kosslyn, S.M. Image and brain: The resolution of the imagery debate. Cambridge, Massachusetts: The MIT Press, 1996.Google Scholar
  26. Kounios, J., Smith, R.W., Yang, W., Bachman, P. and D'Esposito, M. Cognitive association formation in human memory revealed by spatiotemporal brain imaging. Neuron, 2001, 29: 297-306.PubMedCrossRefGoogle Scholar
  27. Lehmann, D. Principles of spatial analysis. In: A.S. Gevins and A. Remond (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology. Vol 1: Methodes of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam, 1987: 309-354.Google Scholar
  28. Lehmann, D. From mapping to the analysis and interpretation of EEG/EP maps. In: K. Maurer (Ed.), Topgraphic brain mapping of EEG and evoked potentials. Springer, New York, Berlin, Heidelberg, 1989: 54-75.Google Scholar
  29. Menard, M.T., Kosslyn, S.M., Thompson, W.L., Alpert, N.M. and Rauch, S.L. Encoding words and pictures: a positron emission tomography study. Neuropsychologia, 1996, 34: 185-194.PubMedCrossRefGoogle Scholar
  30. Michel, C.M., Henggeler, B. and Lehmann, D. 42-channel potential mapseries to visual contrast and stereo stimuli: perceptual and cognitive event-related potentials. Int. J. Psychophysiol., 1992, 12: 133-145.PubMedCrossRefGoogle Scholar
  31. Michel, C.M., Grave de Peralta, R., Lantz, G., Gonzalez Andino, S., Spinelli, L., Blanke, O., Landis, T. and Seeck, M. Spatiotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J. Clin. Neurophysiol., 1999a, 16: 239-266.PubMedCrossRefGoogle Scholar
  32. Michel, C.M., Seeck, M. and Landis, T. Spatio-temporal dynamics of human cognition. News Physiol. Sci., 1999b, 14: 206-214.PubMedGoogle Scholar
  33. Michel, C.M. and Lehmann, D. Single doses of Piracetam affect 42-channel event-related potential microstate maps in a cognitive paradigm. Neuropsychobiology, 1993, 28: 212-221.PubMedCrossRefGoogle Scholar
  34. Morand, S., Thut, G., de Peralta, R.G., Clarke, S., Khateb, A., Landis, T. and Michel, C.M. Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cereb. Cortex, 2000, 10: 817-825.PubMedCrossRefGoogle Scholar
  35. Nobre, A.C., Allison, T. and McCarthy, G. Word recognition in the human inferior temporal lobe. Nature, 1994, 372: 260-263.PubMedCrossRefGoogle Scholar
  36. Oldfield, R.C. The assessment and analysis of handedness: the Edinburg Inventory. Neuropsychologia, 1971, 9: 97-113.PubMedCrossRefGoogle Scholar
  37. Pascual-Marqui, R.D., Michel, C.M. and Lehmann, D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychopysiol., 1994, 18: 49-65.CrossRefGoogle Scholar
  38. Pascual-Marqui, R.D., Michel, C.M. and Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Biomed. Eng., 1995, 7: 658-665.CrossRefGoogle Scholar
  39. Pegna, A.J., Khateb, A., Spinelli, L., Seeck, M., Landis, T. and Michel, C.M. Unraveling the cerebral dynamics of mental imagery. Hum. Brain Map., 1997, 5: 410-421.CrossRefGoogle Scholar
  40. Perani, D., Schnur, T., Tettamanti, M., Gorno-Tempini, M., Cappa, S.F. and Fazio, F. Word and picture matching: a PET study of semantic category effects. Neuropsychologia, 1999, 37: 293-306.PubMedCrossRefGoogle Scholar
  41. Pollen, D.A. On the neural correlates of visual perception. Cereb. Cortex, 1999, 9: 4-19.PubMedCrossRefGoogle Scholar
  42. Price, C.J., Wise, R.J. and Frackowiak, R.S. Demonstrating the implicit processing of visually presented words and pseudowords. Cereb. Cortex, 1996, 6: 62-70.PubMedGoogle Scholar
  43. Pugh, K.R., Shaywittz, B.A., Shaywitz, S.E., Constable, R.T., Skudlarski, P., Fulbright, R.K., Bronen, R.A., Shankweiler, D.P., Katz, L., Fletcher, J.M. and Gore, J.C. Cerebral organization of component processes in reading. Brain, 1996, 119: 1221-1238.PubMedGoogle Scholar
  44. Schendan, H.E., Ganis, G. and Kutas, M. Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology, 1998, 35: 240-251.PubMedCrossRefGoogle Scholar
  45. Shimoyama, I., Nakajima, Y., Ito, T. and Shibata, T. Visual evoked potentials relating to imagery: words for concrete objects versus absolute concepts. Brain Topogr., 1997, 9: 271-274.PubMedCrossRefGoogle Scholar
  46. Skrandies, W. Evoked potential correlates of semantic meaning: A brain mapping study. Cogn. Brain Res., 1998, 6: 173-183.CrossRefGoogle Scholar
  47. Snodgrass, J.G. and Vanderwart, M. A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity and visual complexity. J. Exp. Psychol., 1980, 6: 174-215.Google Scholar
  48. Tarkiainen, A., Helenius, P., Hansen, P.C., Cornelissen, P.L. and Salmelin, R. Dynamics of letter string perception in the human occipitotemporal cortex. Brain, 1999, 122: 2119-2132.PubMedCrossRefGoogle Scholar
  49. Thut, G., Hauert, C.A., Morand, S., Seeck, M., Landis, T. and Michel, C.M. Evidence for interhemispheric motor level transfer in a simple reaction time task: An EEG study. Exp. Brain Res., 1999, 128: 256-261.PubMedCrossRefGoogle Scholar
  50. Thut, G., Hauert, C.A., Viviani, P., Morand, S., Spinelli, L., Blanke, O., Landis, T. and Michel, C. Internally-driven versus externally cued movement selection: A study on the timing of brain activity. Cogn. Brain Res., 2000, 9: 261-269.CrossRefGoogle Scholar
  51. Vandenberghe, R., Price, C., Wise, R., Josephs, O. and Frackowiak, R.S. Functional anatomy of a common semantic system for words and pictures. Nature, 1996, 383: 254-256.PubMedCrossRefGoogle Scholar
  52. Vanni, S., Revonsuo, A., Saarinen, J. and Hari, R. Visual awareness of objects correlates with activity of right occipital cortex. Neuroreport, 1996, 8: 183-186.PubMedGoogle Scholar
  53. Zhang, X.L., Begleiter, H., Porjesz, B. and Litke, A. Visual object priming differs from visual word priming: an ERP study. Electroenceph. Clin. Neurophysiol., 1997, 102: 200-215.PubMedCrossRefGoogle Scholar

Copyright information

© Human Sciences Press, Inc. 2002

Authors and Affiliations

  • Asaid Khateb
    • 1
    • 2
  • Alan J. Pegna
    • 1
    • 2
  • Christoph M. Michel
    • 2
    • 3
  • Theodor Landis
    • 4
  • Jean-Marie Annoni
    • 1
  1. 1.Neuropsychology Unit, Department of NeurologyUniversity HospitalGeneva
  2. 2.Functional Brain Mapping Laboratory, Department of NeurologyUniversity HospitalGeneva
  3. 3.Plurifaculty Program of Cognitive NeuroscienceUniversity of GenevaGeneva
  4. 4.Department of NeurologyUniversity HospitalGeneva

Personalised recommendations