Journal of Chemical Ecology

, Volume 28, Issue 3, pp 587–599 | Cite as

Identification of a Triterpenoid Saponin from a Crucifer, Barbarea vulgaris, as a Feeding Deterrent to the Diamondback Moth, Plutella xylostella

  • Tetsuro ShinodaEmail author
  • Tsuneatsu Nagao
  • Masayoshi Nakayama
  • Hiroaki Serizawa
  • Masaji Koshioka
  • Hikaru Okabe
  • Akira Kawai


Larvae of the diamondback moth, Plutella xylostella, a crucifer specialist, refuse to feed on a crucifer, Barbarea vulgaris, because of the presence of a feeding deterrent, which is extractable with chloroform. We isolated a feeding deterrent from B. vulgaris leaves, by successive fractionations with silica-gel, ODS, i.e., C18 reversed phase, and Sephadex LH-20 column chromatographies, and ODS-HPLC, guided by a bioassay for feeding deterrent activity. The structure of the compound was determined to be a monodesmosidic triterpenoid saponin, 3-O-[O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl]-hederagenin, based on FAB-MS, 1H- and 13C-NMR spectra, and hydrolysis experiments. When the compound was applied to cabbage leaf disks at greater than 0.18 μg/mm2, consumption of the disks by third instars was less than 11% of control disks treated with the solvent alone. Furthermore, all first instars died on the disks treated with the same concentrations. Because the concentration of the compound in the fresh leaves of B. vulgaris was comparable to the effective dose in the cabbage leaf disk tested, we conclude that the unacceptability of B. vulgaris to P. xylostella larvae is primarily due to this saponin.

Barbarea vulgaris Brassicaceae diamondback moth feeding deterrent 3-O-[O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl]-hederagenin host plant resistance insect-plant interactions Lepidoptera Plutella xylostella triterpenoids saponins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, T., Tanio, Y., and Suga, T. 1976. Triterpenoid saponins from Fatsia japonica. Phytochemistry 15:781–784.Google Scholar
  2. Daido, M., Fukamiya, N., Okano, M., Tagahara, K., Hatakoshi, M., and Yamazaki, H. 1993. Antifeedant and insecticidal activity of quassinoides against diamondback moth (Plutella xylostella). Biosci. Biotech. Biochem. 57:244–246.Google Scholar
  3. Fahleson, A., Eriksson, I., and Glimelius, K. 1994. Intertribal somatic hybrids between Brassica napus and Barbarea vulgaris-production of in vitro plantlets. Plants Cell Rep. 13:411–416.Google Scholar
  4. Feeny, P. 1977. Defensive ecology of the Cruciferae. Ann. Mo. Bot. Gard. 64:221–234.Google Scholar
  5. Gupta, P. D. and Thorsteinson, A. J. 1960a. Food plant relationship of diamondback moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of larva. Entomol. Exp. Appl. 3:241–250.Google Scholar
  6. Gupta, P. D. and Thorsteinson, A. J. 1960b. Food plant relationship of diamondback moth (Plutella maculipennis (Curt.)). II. Sensory relationship of oviposition of the adult female. Entomol. Exp.Appl. 3:305–314.Google Scholar
  7. Hermawan, W., Nakajima, S., Tsukuda, R., Fujisaki, K., and Nakasuji, F. 1997. Isolation of an antifeedant compound from Andrographis paniculata (Acanthaceae) against the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 32:551–559.Google Scholar
  8. Hillyer, R. J. and Thorsteinson, A. J. 1969. The influence of the host plants or males on ovarian development or oviposition in diamondback moth, Plutella maculipennis (Curt.). Can. J. Zool. 47:805–816.Google Scholar
  9. Hostettmann, K. and Marston, A. 1995. Saponins. Cambridge University Press, Cambridge, p. 548.Google Scholar
  10. Huang, X., Renwick, J. A. A., and Sachdev-Gupta, K. 1994. Oviposition stimulants in Barbarea vulgaris for Pieris rapae and P. napi oleracea: Isolation, identification and differential activity. J. Chem. Ecol. 20:423–438.Google Scholar
  11. Idris, A. B. and Grafius, E. 1996. Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ. Entomol. 25:825–833.Google Scholar
  12. Kohda, H., Tanaka, S., and Yamaoka, Y. 1990. Saponins from leaves of Acanthopanax hypoleucus Makino. Chem. Pharm. Bull. 38:3380–3383.Google Scholar
  13. Merker, A. and Nilsson, P. 1995. Some oil crop properties in wild Barbarea and Lepidium species. Swe. J. Agric. Res. 25:173–178.Google Scholar
  14. Nielsen, J. K. 1996. Intraspecific variability in adult flea beetle behaviour and larval performance on an atypical host plant. Entomol. Exp. Appl. 80:160–162.Google Scholar
  15. Nielsen, J. K. 1997a. Variation in defences of the plant Barbarea vulgaris and in counteradaptations by the flea beetle Phyllotreta nemorum. Entomol. Exp. Appl. 82:25–35.Google Scholar
  16. Nielsen, J. K. 1997b. Genetics of the ability of Phyllotreta nemorum larvae to survive in an atypical host plant, Barbarea vulgaris ssp. arcuata. Entomol. Exp. Appl. 82:37–44.Google Scholar
  17. Nielsen, J. K. 1999. Specificity of Y-linked gene in the flea beetle Phyllotreta nemorum for defences in Barbarea vulgaris. Entomol. Exp. Appl. 91:359–368.Google Scholar
  18. Nielsen, J. K., Larsen, L. M., and Sorensen, H. 1977. Cucurbitacin E and I in Iberis amara: Feeding inhibitors for Phyllotreta nemorum. Phytochemistry 16:1519–1522.Google Scholar
  19. Sachdev-Gupta, K., Radke, C. D., and Renwick, J.A.A. 1993a. Antifeedant activity of cucurbitacins from Iberis amara against larvae of Pieris rapae. Phytochemistry 33: 1385–1383.Google Scholar
  20. Sachdev-Gupta, K., Radke, C. D., Renwick, J. A. A., and Dimock, M. B. 1993b. Cardenolides from Erysimum cheiranthoides: Feeding deterrents to Pieris rapae Larvae. J. Chem. Ecol. 19:1355–1369.Google Scholar
  21. Senatore, F., D'agostino, M., and Dini, I. 2000. Flavonoid glycosides of Barbarea vulgaris L. (Brassicaceae). J. Agric. Food Chem. 48:2659–2662.Google Scholar
  22. Serizawa, H., Shinoda, T., and Kawai, A. 2001. Occurrence of a feeding deterrent in Barbarea vulgaris (Brassicales: Brassicaceae), a crucifer unacceptable to the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Appl. Entomol. Zool. 36: 465–470. PLUTELLA FEEDING DETERRENT 599Google Scholar
  23. Talekar, N. S. and Shelton, A. M. 1993. Biology, ecology and management of the diamondback moth. Annu. Rev. Entomol. 38:275–301.Google Scholar
  24. Thorsteinson, A. J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.): Lepidoptera). Can. J. Zool. 31:52–72.Google Scholar
  25. Yamada, H. and Koshihara, T. 1978. A simple mass rearing method of the diamondback moth. Plant Prot. 28:253–256.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Tetsuro Shinoda
    • 1
    Email author
  • Tsuneatsu Nagao
    • 2
  • Masayoshi Nakayama
    • 3
  • Hiroaki Serizawa
    • 4
  • Masaji Koshioka
    • 3
  • Hikaru Okabe
    • 2
  • Akira Kawai
    • 1
  1. 1.National Institute of Vegetable and Tea ScienceMieJapan
  2. 2.Faculty of Pharmaceutical ScienceFukuoka UniversityJonan-ku, FukuokaJapan
  3. 3.National Institute of Floricultural ScienceTsukuba, IbarakiJapan
  4. 4.Nagano Vegetable and Ornamental Crops Experiment StationNagano, NaganoJapan

Personalised recommendations