Environmental Monitoring and Assessment

, Volume 75, Issue 2, pp 121–134

Biomonitoring Heavy Metals in Estuaries: A Field Comparison of Two Brown Algae Species Inhabiting Upper Estuarine Reaches



Biomonitoring dissolved heavy metals within estuaries,particularly at their upper reaches, frequently has to relyon several biomonitors; rarely a single species thrives allalong the salinity gradient. To properly do so, it must beestablished whether those biomonitors actually accumulateheavy metals alike. In this study, two brown seaweeds fromthe upper section of three NW Spain estuaries – the widely-known Fucus vesiculosus and the estuarine Fucusceranoides – were compared as metal biomonitors. Bothspecies were collected at five locations where they eithercoexist or live close to each other and their heavy metalcontent (Cu, Cr, Mn, Zn, Fe, Al) was measured. Analyseswere appropriately replicated for each species x locationcombination to allow a statistically reliable detection ofdifferences in bioaccumulation, with particular emphasis onthe magnitude of interspecific differences. The lack of significant differences for Cu, Mn, and Zncontents in F. ceranoides and F. vesiculosussupports the feasibility of their joint use to monitorthese metals along the estuaries. Conversely, F.ceranoides concentrated significantly higher levels of Cr,Fe, and Al than F. vesiculosus and hence combiningdata for both fucoids to monitor these elements seemsimpractical. The correlation of species differencestogether with a similar Al:Fe ratio in both weed tissue andsediment suggest that Cr, Fe, and Al tissue-burdens mightbe considerably biased by sediment retained on the surfaceof the weed. Parallel analyses of Al and/or Fe in seaweedsand sediments could serve to keep track of thisinterference and may help to combine data from both fucoidsfor monitoring elements like Cr.

heavy metals Fucus ceranoides Fucus vesiculosus NW Spain pollution monitoring upper estuarine reaches 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amer, H., Emons, H. and Ostapczuk, P.: 1997, ‘Application of multielement techniques for the fingerprinting of elementalcontents in Fucus vesiculosus from the North Sea’, Chemosphere 34, 2123–2131.Google Scholar
  2. Barnett, B. E. and Ashcroft, C. R.: 1985,‘Heavy metals in Fucus vesiculosus in the Humber estuary’, Environ. Pollut. (Ser. B) 9, 193–213.Google Scholar
  3. Barreiro, R., Real, C. and Carballeira, A.: 1993, ‘Heavy-metal accumulation by Fucus ceranoides in a small estuary in North-West Spain’, Mar. Environ. Res. 36, 39–61.Google Scholar
  4. Barreiro, R., Real, C. and Carballeira, A.: 1994, ‘Heavy-metal horizontal distribution in surface sediments from a small estuary(Pontedeume, Spain)’, Sci. Total Environ. 154, 87–100.Google Scholar
  5. Black, W. A. P. and Mitchell, R. L.: 1952, ‘Trace elements in thecommon brown algae and in sea water’, J. Mar. Biol. Ass. UK 30, 575–584.Google Scholar
  6. Boniforti, R., Bacciola, D., Niccolai, I. and Ruggiero, R.: 1988, ‘Selective extractions as an estimate of bioavailability of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in marine sediments collected from the central Adriatic sea’, Environ. Technol. Lett. 9, 117–126.Google Scholar
  7. Bryan, G. W.: 1983, ‘Brown seaweed, Fucusvesiculosus, and the gastropod Littorina littoralis, as indicators of trace metal availability in estuaries’, Sci. Total Environ. 28, 91–104.Google Scholar
  8. Bryan, G. W. and Hummerstone, L. G.: 1973, ‘Brown seaweed as indicator of heavy metals in estuaries in South-West England’, J. Mar.Biol. Ass. UK 53, 705–720.Google Scholar
  9. Bryan, G. W., Langston, W. J., Hummerstone, L. G., Burt, G. R. and Ho, Y. B.: 1983, ‘Anassessment of the gastropod, Littorina littorea, as an indicator of heavy-metal contamination in United Kingdom estuaries’, J. Mar. Biol. Ass. UK 63, 327–345.Google Scholar
  10. Bryan, G.W., Langston,W. J., Hummerstone, L. G. and Burt, G. R.: 1985, ‘A guide to the assessment of heavymetal contamination in the estuaries using biological indicators’, Mar. Biol. Ass. UK, Occas. Publ. 4, 92 pp.Google Scholar
  11. Burdon-Jones, C., Denton, G.R. W., Jones, G. B. and McPhie, K. A.: 1982, ‘Regional and seasonal variations of trace metals in tropical Phaeophyceae from North Queensland’, Mar. Environ. Res. 7, 13–30.Google Scholar
  12. Cullinane, J. P. and Whelan, P. M.: 1982, ‘Copper, cadmium and zinc in seaweedsfrom the South Coast of Ireland’, Mar. Pollut. Bull. 13, 205–208.Google Scholar
  13. Forsberg, A., Söderlund, S., Frank, A., Peterson, L. R. and Pedersén, M.: 1988, ‘Studies on metal content in the brown seaweed, Fucus vesiculosus, from the Achipelago of Stockholm’, Environ. Pollut. 49, 245–263.Google Scholar
  14. Foster, P.: 1976, ‘Concentrations and concentration factors of heavy metals in brown algae’, Environ.Pollut. 10, 45–53.Google Scholar
  15. Freitas, M. C., Cornelis, R., De Corte, F. and Mees, L.: 1993, ‘Sample preparation of aquatic macrophytes foranalysis of minor-and trace-elements’, Sci. Total Environ. 130–131, 109–120.Google Scholar
  16. Fuge, R. and James K. H.: 1974, ‘Trace metalconcentrations in Fucus from the Bristol channel’, Mar. Pollut. Bull. 5, 9–12.Google Scholar
  17. Gledhill, M., Brown, M. T., Nimmo, M., Moate, R.and Hill, S. J.: 1998, ‘Comparison of techniques for the removal of particulate material from seaweed tissue’, Mar. Environ. Res. 45, 295–307.Google Scholar
  18. Haritonidis, S., Jäger, H.-J. and Schwantes H.-O.: 1983, ‘Accumulation of cadmium, zinc, copper and lead by marinemacrophyceae under culture conditions’, Angew. Botanik. 57, 311–330.Google Scholar
  19. Haritonidis, S. and Malea, P.: 1999, ‘Bioaccumulationof metals by the green alga Ulva rigida from Thermaikos Gulf, Greece’, Environ. Pollut. 104, 365–372.Google Scholar
  20. Holmes, M. A., Brown, M. T., Loutit, M. W. and Ryan, K.: 1991, ‘The involvement of epiphytic bacteria in Zinc concentration by the red alga Gracilaria sordida’, Mar. Environ. Res. 31, 56–67.Google Scholar
  21. Krumgalz, B. S. and Fainshtein, G.: 1989, ‘Trace metal contents in certified reference sedimentsdetermined by nitric acid digestion and atomic absortion espectrometry’, Anal. Chim. Acta 218, 335–340.Google Scholar
  22. Levine, H. G.: 1984,‘The Use of Seaweeds for Monitoring Coastal Waters’, in L. E. Shubert (ed.), Algae as Ecological Indicators, Academic Press, London, pp. 189–210.Google Scholar
  23. Lüning, K.: 1990, Seaweeds: Their Environment, Biogeography, and Ecophysiology, Wiley, New York, 529 p.Google Scholar
  24. Luoma, S. N.: 1990, ‘Processes Affecting Metal Concentrations in Estuarine and Coastal Marine Sediments’, inR.W. Furness and P. S. Rainbow (eds), Heavy Metals in the Marine Environment, CRC Press, Inc., Boca Raton, FL, pp. 51–66.Google Scholar
  25. Luoma, S. N., Bryan, G.W. and Langston,W. J.: 1982, ‘Scavenging of heavy metals from particulates by brown seaweed’, Mar. Pollut.Bull. 13, 394–396.Google Scholar
  26. Malea, P., Haritonidis, S. and Kevrekidis, T.: 1995, ‘Metal content of some green and brown seaweeds fromAntikyra Gulf (Greece)’, Hydrobiologia 310, 19–31.Google Scholar
  27. Melhuus, A., Seip, K. L. and Seip, H. M.: 1978, ‘A preliminary study ofthe use of benthic algae as biological indicators of heavy metal pollution in Sørfjorden, Norway’, Environ. Pollut. 15, 101–107.Google Scholar
  28. Morris, A.W. and Bale, A. J.: 1975, ‘The accumulation of cadmium, copper, manganese and zinc by Fucus vesiculosus in the BristolChannel’, Estuar. Coast. Mar. Sci. 3, 153–163.Google Scholar
  29. Munda, I. M. and Hudnik, V.: 1991, ‘Trace metal content in some seaweedsfrom the Northern Adriatic’, Bot. Mar. 34, 241–249.Google Scholar
  30. Phillips, D. J. H.: 1977, ‘The use of biological indicator organisms tomonitor trace metal pollution in marine and estuarine environments – A review’, Environ. Pollut. 13, 281–317.Google Scholar
  31. Real, C., Barreiro, R.and Carballeira, A.: 1993, ‘Heavy metal behaviour in estuarine sediments in the Ria de Arousa (NW Spain). Differences between metals’, Sci. Total Environ. 128, 51–67.Google Scholar
  32. Real, C., Barreiro, R. and Carballeira, A.: 1994, ‘The application of microwave heating insequential extractions of heavy metals in estuarine sediments’, Sci. Total Environ. 152, 135–142.Google Scholar
  33. Rice, D. L. and Lapointe, B. E.:1981, ‘Experimental outdoor studies with Ulva fasciata Delile. II. Trace metal chemistry’, J. Exp. Mar. Biol. Ecol. 54, 1–11.Google Scholar
  34. Riget, F., Johansen, P. and Asmund, G.: 1997, ‘Baseline levels and natural variability of elements in three seaweed species from WestGreenland’, Mar. Pollut. Bull. 34, 171–176.Google Scholar
  35. Rönnberg, O., Adjers, K., Ruokolahti, C. and Bondestam M.: 1990, ‘Fucusvesiculosus as an indicator of heavy metal availability in a fish farm recipient in the Northern Baltic Sea’, Mar. Pollut. Bull. 21, 388–392.Google Scholar
  36. Stengel, D. B. and Dring, M. J.: 2000, ‘Copper and iron concentrations in Ascophyllum nodosum (Fucales, Phaeophyta) from different sites inIreland and after culture experiments in relation to thallus age and epiphytism’, J. Exp. Mar. Biol. Ecol. 246, 145–161.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Área de Ecología, Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de CienciasUniversidad de La CoruñaLa CoruñaSpain
  2. 2.Área de Ecología, Departamento de Biología Fundamental, Facultad de BiologíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations