International Ophthalmology

, Volume 23, Issue 4–6, pp 279–289 | Cite as

Non-invasive measurement of the concentration of melanin, xanthophyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry

  • Martin Hammer
  • Dietrich Schweitzer
  • Eike Thamm
  • Achim Kolb


A new model of the reflection of the human ocular fundus on the basis of the adding-doubling method, an approximate solution of the radiative transport equation, is described. This model enables the calculation of the concentration of xanthophyll in the retina, of melanin in theretinal pigment epithelium and in the choroid, and of hemoglobin in the choroid from fundus reflectance spectra. The concentration values found in 12 healthy subjects are in excellent agreement with literature data. In single cases of pathologic fundus alterations possiblebenefits to the ophthalmologic diagnostics is demonstrated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Norren D, Tiemeijer LF. Spectral reflectance of the humaneye. Vision Res 1986; 26: 313–320.Google Scholar
  2. 2.
    Delori FC, Pflibsen KP. Spectral reflectance of the human ocular fundus. Appl Opt 1989; 28: 1061–1077.Google Scholar
  3. 3.
    Schweitzer D, Königsdörffer E, Tröger G, Augsten R, Klein S, Roth H. Möglichkeiten und Grenzen der Fundusreflektometrie zum Nachweis von Veränderungen in einzelnen Schichten des Augenhintergrundes. Folia Ophthalmol 1990; 15: 125–137.Google Scholar
  4. 4.
    Kubelka P, Munk F. Ein Beitrag zur Optik der Farbanstriche. Zeitschr f techn Optik 1931; 11: 593–611.Google Scholar
  5. 5.
    Hammer M, Schweitzer D, Leistritz L, Scibor M, Donnerhacke KH, Strobel J. Imaging Spectroscopy of the human ocular fundus in vivo. J Biomed Opt 1997; 2: 418–425.Google Scholar
  6. 6.
    Hammer M, Roggan A, Schweitzer D, Müller G. Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-spere technique and inverse Monte Carlo Simulation. Phys Med Biol 1995; 40: 963–978.Google Scholar
  7. 7.
    Ishimaru A. Wave propagation and scattering in random media. Academic Press New York, San Francisco, London.Google Scholar
  8. 8.
    Wang L-H, Jacques SL. Monte Carlo modelling of light transport in multi-layered tissues in standard C. The University of Texas, M.D. Anderson Cancer Center, Houston.Google Scholar
  9. 9.
    Star WM, Marijnissen JPA, van Gemert MJC. Light dosimetry in optical phantoms and tissue: L Multiple flux and transport theory. Phys Med Biol 33 437- 454.Google Scholar
  10. 10.
    van de Huist HC. A New Look on Multiple Scattering. Unnumbered mimeographed report, NASA Institute for Space Science, New York, 1963.Google Scholar
  11. 11.
    van de Huist HC. Multiple light scattering. Vol 1; Academic, New York, 1980.Google Scholar
  12. 12.
    Prahl SA. Light Transport in Tissue, PhD thesis at the University of Texas at Austin, 1988.[ 106 ] 289Google Scholar
  13. 13.
    Prahl SA. The adding-doubling method. In: Welch AJ and van Gemert MJC (eds), Optical-Thermal Response of Laser-Irradiated Tissue., Plenum Press, New York, 1995.Google Scholar
  14. 14.
    Plass GN, Kattawar GW, Catchings FE. Matrix operator theory of radiative transfer. 1: Rayleigh scattering. Appl Opt 1973; 12: 314–329.Google Scholar
  15. 15.
    Hildebrand FB. Introduction to Numerical Analysis. Dover, New York, 1974.Google Scholar
  16. 16.
    Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys J 1941; 93: 70–83.Google Scholar
  17. 17.
    Wiscombe WJ. On initialization, error, and flux conservation in the doubling method. J Quant Spectrosc Radiat Transfer 1976; 16: 637–658.Google Scholar
  18. 18.
    Rohen JW. Anatomie und Embryologie. In: Francois J, Holiwich I (eds) Augenheilkunde in KImik und Praxis, Thieme, Stuttgart, 1977.Google Scholar
  19. 19.
    Naumann GOH. Pathologie des Auges. Vol. 1, Berlin, Heidelberg, New York, 1997.Google Scholar
  20. 20.
    van Assendelft OW. Spectrophotometry of heamoglobin derivatives. Roal Vangorcum, Assen, 1970.Google Scholar
  21. 21.
    Gabel V-P, Birngruber R, Hillenkamp F. Visible and near infrared light absorption in pigment epithelium and choroid. In: Shimizu K, Osterhuis JA (eds) Proc. XXIII consilium ophthalmologicum, Kyoto, (Amsterdam Oxford: Excerpta Medica), pp. 658–662, 1978.Google Scholar
  22. 22.
    Wyszecki G, Stiles WS. Colour science. Wiley & Sons, New York, 1967.Google Scholar
  23. 23.
    van Notren D, Vos JJ. Spectral transmission of the human ocular media. Vision Res 1974; 14: 1237–1244.Google Scholar
  24. 24.
    Pokorny I, Smith VC, Lutze M. Aging of the human lens. Appl Opt 1987; 26: 1437–1440.Google Scholar
  25. 25.
    Brent RP. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, 1973.Google Scholar
  26. 26.
    Hammer M, Schweitzer D, Thamm E, Koib E. Optical properties of ocular fundus tissues determined by optical coherence tomography. Submitted to Op. Comm. 2000.Google Scholar
  27. 27.
    Hammer M, Schweitzer D, Leistritz L, Scibor M, Donnerhacke KH, Strobel J. Imaging spectroscopy of the human ocular fundus in vivo. J Biomed Opt 1997; 2: 418–425.Google Scholar
  28. 28.
    Gabel V-P, Birngruber R, Hillerikamp F. Die Lichtabsorption am Augenhintergrund. GSF-Bericht A 55, Gesellschaft für Strahien-und Umweltforschung mbH, München, 1976.Google Scholar
  29. 29.
    Schweitzer D, Hupfer U, Hammer M, Scibor M. Discrimination between ARMD-patients and normals by reflectometric data. Invest Ophthalmol Vis Sci 1996; 37: 548.Google Scholar
  30. 30.
    Bone RA, Landrurn JT, Fernandez L, Tarsis SL: Analysis of the macular pigment by HPLC: Retinal distribution and age study.Invest Ophthalmol Vis Sci 1988; 29: 843–849.Google Scholar
  31. 31.
    Gerster H. Antioxidant protection of the ageing macula. Age Ageing 1991; 20: 60–69.Google Scholar
  32. 32.
    Schalch W, Werner P. Vitamins and carotenoids - a promising approach to reducing the rise of coronary heart disease, cancer; and eye disease. Adv Exp Med Biol 1994; 366; 335–350.Google Scholar
  33. 33.
    Sommerburg O, Keunen JEE, Bird AC, van Kuijk FJGM. Fruits and vegetables that are sources for lutein and Zeaxantin: the macular pigment in human eyes. Br J Ophthalmol 1998; 82: 907–910.Google Scholar
  34. 34.
    Young RW. Solar radiation and age related macular degeneration. Surv Ophthalmol 1998; 32: 252–269.Google Scholar
  35. 35.
    Sachsenweger M. Augenheilkunde. Hippokrates Verlag, Stuttgart,1994.Google Scholar
  36. 36.
    Snyder AW. Photoreceptor optics - theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, 1975.Google Scholar
  37. 37.
    Snyder AW. Photoreceptor optics - theoretical principles. In:Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, 1975.Google Scholar
  38. 38.
    van de Kraats J, Berendschot TTJM, van Norren. The pathways of light measured in fundus reflectometry. Vision Res 1996; 36: 2229–2247.Google Scholar
  39. 39.
    DeLint PJ, Berendschot TTJM, van Nonren D. A comparison of the optical stiles-crawford effect and retinal densitometry in a clinical setting. Invest Ophthalmol 1998; 39: 1519–1523.Google Scholar
  40. 40.
    Cristini G, Cennarno O, Daponte P. Choroidal thickness in primary glaucoma. Ophthalmologica 1991; 202: 81–85.Google Scholar
  41. 41.
    Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 1998; 66: 163–181.Google Scholar
  42. 42.
    Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PO, de Jong PT. Morphometric analysis of Bruch's membrane, the choriocapillaries, and the choroid in aging. Invest Ophthalmol Vis Sci 1994; 35: 2857-64.Google Scholar
  43. 43.
    Kubota T, Jonas JB, Naumann GOH. Decreased chonoidal thickness in eyes with secondary angle closure glaucoma. Anaetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol 1993; 77: 430–432.Google Scholar
  44. 44.
    Yin ZQ, Vaegan Millar TJ, Beaumont P, Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997; 6: 23–32.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Hammer
    • 1
  • Dietrich Schweitzer
    • 1
  • Eike Thamm
    • 1
  • Achim Kolb
    • 1
  1. 1.Department of OphthalmologyUniversity of JenaJenaGermany

Personalised recommendations