, Volume 123, Issue 1, pp 21–29 | Cite as

Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer

  • Zhiyong Liu
  • Qixin Sun
  • Zhongfu Ni
  • Eviatar Nevo
  • Tsomin Yang


Powdery mildew caused by Erysiphe graminis f. sp. tritici is one of the most important wheat diseases in many regions of theworld. A powdery mildew resistance gene, originating from wild emmerwheat (Triticum dicoccoides) accession `C20', from Rosh Pinna, Israel,was successfully transferred to hexaploid wheat through crossing andbackcrossing. Genetic analysis indicated that a single dominant genecontrols the powdery mildew resistance at the seedling stage. SegregatingBC1F2 progenies of the cross 87-1/C20//2*8866 wereused for bulked segregant analysis (BSA). The PCR approach was used togenerate polymorphic DNA fragments between the resistant and susceptibleDNA pools by use of 10-mer random primers, STS primers, and wheatmicrosatellite primers. Three markers, Xgwm159/430,Xgwm159/460, and Xgwm159/500, were found to be linked tothe resistance gene. After evaluating the polymorphic markers in twosegregating populations, the distance between the markers and the mildewresistance gene was estimated to be 5–6 cM. By means of ChineseSpring nullisomic-tetrasomics and ditelosomics, the polymorphic markersand the resistance gene were assigned to chromosome arm 5BS and werephysically mapped on the gene rich regions of fragment length (FL) 0.41–0.43 by Chinese Spring deletion lines. As no powdery mildew resistancegene has been reported on chromosome arm 5BS, the mildew resistancegene originating from C20 should be a new gene and is designated Pm30.

Erysiphe graminis f. sp. tritici Blumeria graminis Triticum dicoccoides microsatellite physical mapping powdery mildew resistance wild emmer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akkaya, M.S., A.A. Bhagwat & P.B. Cregan, 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131–1139.Google Scholar
  2. Becker, J. & M. Heun, 1995. Barley microsatellite: allele variation and mapping. Plant Mol Biol 27: 835–845.Google Scholar
  3. Bell, C.J. & J.R. Ecker, 1994. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137–144.Google Scholar
  4. Bryan, G.J., A.J. Collins, P. Stephenson, A. Orry, J.B. Smith & M.D. Gale, 1997. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet 94: 557–563.Google Scholar
  5. Cenci, A., R. D'Ovidio, O.A. Tanzarella, C. Ceoloni & E. Porceddu, 1999. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98: 448–454.Google Scholar
  6. Dyck, P.L., 1994. The transfer of leaf rust resistance from Triticum turgidum ssp. dicoccoides to hexaploid wheat. Can J Plant Sci 74: 671–673.Google Scholar
  7. Endo, T.R. & B.S. Gill, 1996. The deletion stocks of common wheat. J Heredity 87: 295–307.Google Scholar
  8. Gerechter-Amitai, Z.K. & A. Grama, 1974. Inheritance of resistance to stripe rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheats. I. T. durum. Euphytica 23: 387–392.Google Scholar
  9. Gerechter-Amitai, Z.K., C.H. van Silfhout, A. Grama & F. Kleitman, 1989. Yr15 – A new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G25. Euphytica 43: 187–190.Google Scholar
  10. Gill, K.S., B.S. Gill, T.R. Endo & E.V. Boyko, 1996. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143: 1001–1012.Google Scholar
  11. Hartl, L., H. Weiss, F.J. Zeller & A. Jahoor, 1993. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L.). Theor Appl Genet 86: 959–963.Google Scholar
  12. Hartl, L., H. Weiss, U. Stephan, F.J. Zeller & A. Jahoor, 1995. Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90: 601–606.Google Scholar
  13. Hartl, L., V. Mohler, F.J. Zeller, S.L.K. Hsam & G. Schweizer, 1999. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome 42: 322–329.Google Scholar
  14. Hu, X.Y., H.W. Ohm & I. Dweikat, 1997. Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet 94: 832–840.Google Scholar
  15. Huang, X.Q., S.L.K. Hsam, F.J. Zeller, G. Wenzel & V. Mohler, 2000. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101: 407–414.Google Scholar
  16. Jia, J., K.M. Devos, S. Chao, T.E. Miller, S.M. Reader & M.D. Gale, 1996. RFLP based mapping of the homoelogous group 6 chromosome of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92: 559–565.Google Scholar
  17. Keller, M., B. Keller, G. Schachermayr, M. Winzeler, J.E. Schmid, P. Stamp & M.M. Messmer, 1999. Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98: 903–912.Google Scholar
  18. Korzun, V., M.S. Röder, A.J. Worland & A. Börner, 1997. Intrachromosomal mapping of the genes for dwarfing (Rht12) and vernalisation response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breeding 116: 227–232.Google Scholar
  19. Korzun, V., M.S. Röder, M.W. Ganal, A.J. Worland & C.N. Law, 1998. Genetic analysis of the dwarfing gene Rht8 in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96: 1104–1109.Google Scholar
  20. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Annu Eugen 12: 172–175.Google Scholar
  21. Lagercrantz, U., E. Ellegren & L. Andersson, 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21: 1111–1115.Google Scholar
  22. Liu, Z.W., R.M. Biyashev & M.A. Saghai-Maroof, 1996. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93: 869–876.Google Scholar
  23. Ma, Z.Q., M.E. Sorrells & S.D. Tanksley, 1994. RFLP markers linked to powdery mildew resistance gene Pm1, Pm2, Pm3 and Pm4 in wheat. Genome 37: 871–875.Google Scholar
  24. McIntosh, R.A., K.M. Devos, J. Dubcovsky & W.J. Rogers, 2000. Catalogue of gene symbols for wheat: 2000 Supplement.Google Scholar
  25. Michelmore, R., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.Google Scholar
  26. Moseman, J.G., E. Nevo, M.A. El-Morshidy & D. Zohary, 1984. Resistance of Triticum dicoccoides collected in Isreal to infection with Erysiphe graminis tritici. Euphytica 33: 41–47.Google Scholar
  27. Moseman, J.G., E. Nevo, Z.K. Gerechter-Amitai, M.A. El-Morshidy & D. Zohary, 1985. Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25: 262–265.Google Scholar
  28. Nelson, J.C.,M.E. Sorrells, A.E. Van Deynze, Y.H. Lu, M.D. Atkinson, M. Bernard, P. Leroy, J.D. Faris & J.A. Anderson, 1995. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731.Google Scholar
  29. Nevo, E. & A. Beiles, 1989. Genetic diversity of wild emmer wheat in Israel and Turkey. Structure, evolution, and application in breeding. Theor Appl Genet 77: 421–455.Google Scholar
  30. Nevo, E., Z.K. Gerechter-Amitai & A. Beiles, 1991. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme associations. Euphytica 53: 121–130.Google Scholar
  31. Nevo, E., Z.K. Gerechter-Amitai, A. Beiles & E.M. Golenberg, 1986. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Plant Syst Evol 53: 13–30.Google Scholar
  32. Peng, J.H., T. Fahima, M.S. Röder, Y.C. Li, A. Dahan, A. Grama, Y.I. Ronin, A.B. Korol & E. Nevo, 1999. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98: 862–872.Google Scholar
  33. Plaschke, J., M.W. Ganal & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet91: 1001–1007.Google Scholar
  34. Qi, L.L., M.S. Cao, P.D. Chen, W.L. Li & D.J. Liu, 1996. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39: 191–197.Google Scholar
  35. Reader, M. & T.E. Miller, 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica53: 57–60.Google Scholar
  36. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998a. A microsatellite map of wheat. Genetics 149: 2007–2023.Google Scholar
  37. Röder, M.S., V. Korzun, B.S. Gill & M.W. Ganal, 1998b. The physical mapping of microsatellite markers in wheat. Genome 41: 278–283.Google Scholar
  38. Rong, J.K., E. Millet, J. Manisterski & M. Feldman, 2000. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115: 121–126.Google Scholar
  39. Saghai-Maroof, M.A., R.M. Biyashev, G.P. Yang, Q. Zhang & R.W. Allard, 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91: 5466–5470.Google Scholar
  40. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018.Google Scholar
  41. Senior, M.L. & M. Heun, 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36: 884–889.Google Scholar
  42. Shi, A.N., S. Leath & J.P. Murphy, 1998. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88: 144–147.Google Scholar
  43. Talbert, L.E., N.K. Blake, P.W. Chee, T.K. Blake & G.M. Magyar, 1994. Evaluation of ‘sequence-tagged-site’ PCR products as molecular markers in wheat. Theor Appl Genet 87: 789–794.Google Scholar
  44. Taramino, G. & S. Tingey, 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277–287.Google Scholar
  45. Tragoonrung, S., V. Kanazin, P.M. Hayes & T.K. Blake, 1992. Sequence-tagged-site-facilitated PCR for barley genome mapping. Theor Appl Genet 84: 1002–1008.Google Scholar
  46. Wang, Z., J.L. Weber, G. Zhong & S.D. Tanksley, 1994. Survey of plant short tandem DNA repeats. Theor Appl Genet 88: 1–6.Google Scholar
  47. Wu, K.S & S.D. Tanksley, 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241: 225–235.Google Scholar
  48. Xie, D.X., K.M. Devos, G. Moore & M.D. Gale, 1993. RFLPbased genetic maps of the homoeologous group 5-chromosomes of bread wheat (Triticum aestivum L.). Theor Appl Genet 87: 70–74.Google Scholar
  49. Zeller, F.J. & S.L.K. Hsam, 1998. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.). In: A.E. Slinkard (Ed.) Proc. 9th International Wheat Genetics Symp. pp. 178–180, University Extension Press, University of Saskatchewan, Saskatoon, Canada.Google Scholar
  50. Zhuang, Q.S. & Z.S. Li, 1993. Present status of wheat breeding and related genetic study in China. Wheat Information Service 76: 1–15.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Zhiyong Liu
    • 1
  • Qixin Sun
    • 1
  • Zhongfu Ni
    • 1
  • Eviatar Nevo
    • 2
  • Tsomin Yang
    • 1
  1. 1.Department of Plant Genetics & BreedingChina Agricultural UniversityBeijingChina
  2. 2.Institute of EvolutionHaifa UniversityHaifaIsrael

Personalised recommendations