Advertisement

Letters in Mathematical Physics

, Volume 59, Issue 1, pp 47–60 | Cite as

The Universal Gerbe, Dixmier–Douady Class, and Gauge Theory

  • Alan L. Carey
  • Jouko Mickelsson
Article

Abstract

We clarify the relation between the Dixmier–Douady class on the space of self-adjoint Fredholm operators (“universal B-field”) and the curvature of determinant bundles over infinite-dimensional Grassmannians. In particular, in the case of Dirac type operators on a three dimensional compact manifold we obtain a simple and explicit expression for both forms.

Gerbes determinant bundles Hamiltonian quantization index theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS]
    Atiyah, M. F. and Singer, I.: Index theory for skew-adjoint Fredholm operators. IHES Publ. Math. 37 (1969), 305.Google Scholar
  2. [BF]
    Bismut, J.-M. and Freed, D.: The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys. 107 (1986), 103-163.Google Scholar
  3. [BM]
    Bouwknegt, P. and Mathai, V.: D-branes, B-celds and twisted K-theory, J. High Energy Phys. 03 (2000), 007, hep-th/0002023.Google Scholar
  4. [Br]
    Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization, Progr. Math. 107, Birkhhauser, Boston, 1993.Google Scholar
  5. [CDMP]
    Cardona, A., Ducourtioux, C., Magnot, J. P. and Paycha, S.: Weighted traces on algebras of pseudodifferential operators and geometry of loop groups, math.OA/0001117.Google Scholar
  6. [CMM]
    Carey, A. L., Mickelsson, J. and Murray, M. K.: Index theory, gerbes, and Hamiltonian quantization, Comm. Math. Phys. 183 (1997) 707; hep-th/9511151.Google Scholar
  7. [CMM1]
    Carey, A. L., Mickelsson, J. and Murray, M.: Bundle gerbes applied to quantum celd theory, Rev. Math. Phys. 12 (2000), 65; hep-th/9711133.Google Scholar
  8. [CM]
    Carey, A. L. and Mickelsson, J.: A gerbe obstruction to quantization of fermions on odd-dimensional manifolds with boundary, Lett. Math. Phys. 51 (2000), 145; hep-th/9912003.Google Scholar
  9. [Co]
    Connes, A.: Noncommutative Geometry, Academic Press, London, 1994.Google Scholar
  10. [CrMi]
    Cronström, C. and Mickelsson, J.: On topological boundary characteristics in nonabelian gauge theory, J. Math. Phys. 24 (1983), 2528.Google Scholar
  11. [EM]
    Ekstrand, C. and Mickelsson, J.: Gravitational anomalies, gerbes, and hamiltonian quantization. hep-th/9904189; Comm. Math. Phys. 212 (2000), 613.Google Scholar
  12. [FW]
    Freed, D. and Witten, E.: Anomalies in string theory with D-branes, hep-th/9907189.Google Scholar
  13. [Ha]
    Harvey, J.: Topology of the gauge group in noncommutative gauge theory, hep-th/0105242.Google Scholar
  14. [HM]
    Harvey, J. and Moore, G.: Noncommutative tachyons and K-theory, Preprint, hep-th/0009030.Google Scholar
  15. [Kap]
    Kapustin: A.: D-branes in a topologically non-trivial B-celd, Adv. Theor. Math. Phys. 4 (2001), 127, hep-th/9909089.Google Scholar
  16. [LM]
    Langmann, E. and Mickelsson, J.: 3 + 1-dimensional Schwinger terms and noncommutative geometry, Phys. Lett. B 338 (1994), 241.Google Scholar
  17. [LMR]
    Langmann, E., Mickelsson, J. and Rydh, S.: Anomalies and Schwinger terms in NCG celd theory models, J. Math. Phys. 42 (2001), 4779.Google Scholar
  18. [Lo]
    Lott, J.: The index gerbe, math.DG/0106177.Google Scholar
  19. [MR]
    Mickelsson, J. and Rajeev, S.: Current algebras in d + 1 dimensions and determinant bundles over incnite-dimensional Grassmannians, Comm. Math. Phys. 116 (1988), 365.Google Scholar
  20. [PS]
    Pressley, A. and Segal, G.: Loop Groups, Clarendon Press, Oxford, 1986.Google Scholar
  21. [Q]
    Quillen, D.: Superconnection character forms and the Cayley transform, Topology 27 (1988), 211-238; de laHarpe, P.: Classical Banach-Lie Algebras and Banach Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, New York, 1972.Google Scholar
  22. [Ra]
    Rajeev, S.: Universal gauge theory, Phys. Rev. D 42 (1990), 2779.Google Scholar
  23. [Se]
    Segal, G.: Faddeev's anomaly and the Gauss's law, Preprint, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Alan L. Carey
    • 1
  • Jouko Mickelsson
    • 2
  1. 1.Department of MathematicsUniversity of AdelaideAustralia
  2. 2.Royal Institute of TechnologySCFABStockholmSweden

Personalised recommendations