Advances in Computational Mathematics

, Volume 16, Issue 2–3, pp 113–138 | Cite as

Diffraction by an Acoustic Grating Perturbed by a Bounded Obstacle

  • Anne-Sophie Bonnet-Bendhia
  • Karim Ramdani


An original approach to solve 2D time harmonic diffraction problems involving locally perturbed gratings is proposed. The propagation medium is composed of a periodically stratified half-space and a homogeneous half-space containing a bounded obstacle. Using Fourier and Floquet transforms and integral representations, the diffraction problem is formulated as a coupled problem of Fredholm type with two unknowns: the trace of the diffracted field on the interface separating the two half-spaces on one hand, and the restriction of the diffracted field to a bounded domain surrounding the obstacle, on the other hand.

acoustic diffraction perturbed gratings Floquet transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Abboud, Etude mathématique et numérique de quelques problèmes de diffraction d'ondes electromagnétiques, Ph.D. dissertation, Ecole Polytechnique Palaiseau (1991).Google Scholar
  2. [2]
    G. Bao, Variational approximation of Maxwell's equations by periodic structures, SIAM J. Numer. Anal. 32 (1995) 1155-1169.Google Scholar
  3. [3]
    A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Methods Appl. Sci. 17 (1994) 305-338.Google Scholar
  4. [4]
    A.-S. Bonnet-Bendhia and A. Tillequin, A generalized mode matching method for scattering problems with unbounded obstacles, J. Comp. Acoustics, to appear.Google Scholar
  5. [5]
    D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Krieger Publishing Company, 1992).Google Scholar
  6. [6]
    D.C. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, Model. Math. Anal. Numer. 28 (1994) 419-439.Google Scholar
  7. [7]
    D.M. Eidus, The principle of limiting absorption, Amer. Math. Soc. Trans. 47 (1965) 157-191.Google Scholar
  8. [8]
    J. Elschner, R. Hinder, G. Schmidt and F. Penzel, Existence, uniqueness and regularity for solutions of the conical diffraction problem, Math. Mod. Methods Appl. Sci. 10(3) (2000) 317-341.Google Scholar
  9. [9]
    A. Friedman, Mathematics in Industrial Problems, Part 7, The IMA Volumes in Mathematics and its Applications, Vol. 67 (Springer, New York, 1995).Google Scholar
  10. [10]
    D. Huet, Décomposition Spectrale et Opérateurs (resses Universitaires de France, 1976).Google Scholar
  11. [11]
    P. Kuchment and P. Floquet, Theory for Partial Differential Equations (Birkhaüser, Basel, 1993).Google Scholar
  12. [12]
    M. Lenoir and A. Jami, A variational formulation for exterior problems in linear hydrodynamics, Comput. Methods Appl. Mech. Engrg. 16 (1978) 341-359.Google Scholar
  13. [13]
    J.-C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell's equations, SIAM J. Math. Anal. 22(6) (1991) 1679-1701.Google Scholar
  14. [14]
    R. Petit, Electromagnetic Theory of Gratings, Topics in Current Physics, Vol. 22 (Springer, Berlin, 1980).Google Scholar
  15. [15]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV (Academic Press, New York, 1978).Google Scholar
  16. [16]
    J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems (Springer, Berlin, 1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Anne-Sophie Bonnet-Bendhia
    • 1
  • Karim Ramdani
    • 2
  1. 1.Laboratoire UMAENSTAParis Cedex 15France
  2. 2.IECN, Département de MathématiquesUniversité de Nancy IVandœuvre les Nancy CedexFrance

Personalised recommendations