Algebras and Representation Theory

, Volume 5, Issue 1, pp 101–113 | Cite as

The p-Modular Descent Algebras

  • M. D. Atkinson
  • G. Pfeiffer
  • S. J. van Willigenburg


The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained.

descent algebra finite field Coxeter group Cartan matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, M. D.: Solomon's descent algebra revisited, Bull. London Math. Soc. 24 (1992), 545-551.Google Scholar
  2. 2.
    Atkinson, M. D. and Van Willigenburg, S. J.: The p-modular descent algebra of the symmetric group, Bull. London Math. Soc. 29 (1997), 407-414.Google Scholar
  3. 3.
    Bauer, T.: On the automorphism group of Solomon's descent algebra, Sem. Lothar. Combin. 41 (1998), Art. B41z, 10 pp.Google Scholar
  4. 4.
    Bergeron, F. and Bergeron, N.: Symbolic manipulation for the study of the descent algebra of finite Coxeter groups, J. Symbolic Comp. 14 (1992), 127-139.Google Scholar
  5. 5.
    Bergeron, F. and Bergeron, N.: A decomposition of the descent algebra of the hyperoctahedral group 1, J. Algebra 148 (1992), 86-97.Google Scholar
  6. 6.
    Bergeron, N.: A decomposition of the descent algebra of the hyperoctahedral group 2, J. Algebra 148 (1992), 98-122.Google Scholar
  7. 7.
    Bergeron, F., Bergeron, N., Howlett, R. B. and Taylor, D. E.: A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combinatorics 1 (1992), 2344.Google Scholar
  8. 8.
    Bergeron, N. and Van Willigenburg, S.: A multiplication rule for the descent algebra of type D, J. Algebra 206 (1998), 699-705.Google Scholar
  9. 9.
    Blessenohl, D. and Laue, H.: On the descending Loewy series of Solomon's descent algebra, J. Algebra 180 (1996), 698-724.Google Scholar
  10. 10.
    Burrow, M.: Representation Theory of Finite Groups, Academic Press, New York, 1965.Google Scholar
  11. 11.
    Curtis, C. W. and Reiner, I.: Representation of Finite Groups and Associative Algebras, Interscience, New York, 1962.Google Scholar
  12. 12.
    Garsia, A. M. and Reutenauer, C.: A decomposition of Solomon's descent algebra, Adv. Math. 77 (1989), 189-262.Google Scholar
  13. 13.
    Geck, M. and Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori-Hecke algebras, Oxford University Press, 2000.Google Scholar
  14. 14.
    Geck, M. and Rouquier, R.: Centers and simple modules for Iwahori-Hecke algebras, In: Finite Reductive Groups, Related Structures and Representations, Prog. Math. 141, Birkhäuser, Boston, 1997, pp. 251-272.Google Scholar
  15. 15.
    Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. and Thibon, J.-Y.: Noncommutative symmetric functions, Adv. Math. 112 (1995), 218-348.Google Scholar
  16. 16.
    Gessel, I.: Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34 (1984), 289-301.Google Scholar
  17. 17.
    Howlett, R. B.: Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (Series 2) 21 (1980), 62-80.Google Scholar
  18. 18.
    James, G. and Kerber, A.: Encyclopedia of Mathematics and its Applications 16: Algebra; The Representation Theory of the Symmetric Group, Addison-Wesley, Mass., 1981.Google Scholar
  19. 19.
    Malvenuto, C. and Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967-982.Google Scholar
  20. 20.
    Patras, F.: La décomposition en poids des algèbres de Hopf, Ann. Inst. Fourier Grenoble 43 (1993), 1067-1087.Google Scholar
  21. 21.
    Solomon, L.: A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), 255-268.Google Scholar
  22. 22.
    Van Willigenburg, S.: The descent algebras of Coxeter groups, St Andrews University Technical Report CS/97/9, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. D. Atkinson
    • 1
  • G. Pfeiffer
    • 2
  • S. J. van Willigenburg
    • 3
  1. 1.Department of Computer ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of MathematicsNational University of IrelandGalwayIreland
  3. 3.Department of MathematicsCornell UniversityIthacaU.S.A

Personalised recommendations