Advertisement

Mechanics of Time-Dependent Materials

, Volume 6, Issue 1, pp 3–51 | Cite as

Poisson's Ratio in Linear Viscoelasticity – A Critical Review

  • N.W. Tschoegl
  • Wolfgang G. Knauss
  • Igor Emri
Article

Abstract

Poisson's ratio is an elastic constant defined as the ratio of thelateral contraction to the elongation in the infinitesimal uniaxialextension of a homogeneous isotropic body. In a viscoelastic materialPoisson's ratio is a function of time (or frequency) that depends on thetime regime chosen to elicit it. It is important as one of the materialfunctions that characterize bulk behavior.

This paper develops the linear theory of the time- orfrequency-dependent Poisson's ratio, and it reviews work on itsexperimental determination. The latter poses severe difficulties in viewof the high accuracy required. Thus, reliable information on theviscoelastic Poisson's ratio is as yet rather scanty.

The paper also reports on attempts to measure the Poisson's ratioof a viscoelastic material as a function of temperature. Lateralcontraction in creep and at constant rate of extension receivesattention as well.

bulk behavior frequency dependence lateral contraction material characterization Poisson strain and stress Poisson's ratio time dependence temperature dependence viscoelastic behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.D. and Peppiatt, N.A., 'Effect of Poisson's ratio strains in adherends on stresses of an idealized lap joint', J. Strain Anal. 8, 1973, 134-139.Google Scholar
  2. Bauer C.L. and Farris, R.J., 'Determination of Poisson's ratio for polyimide films', Polym. Engrg. Sci. 29, 1989, 1107-1110.Google Scholar
  3. Baumgaertel, M. and Winter, H.H., 'Interrelation between continuous and discrete relaxation time spectra', J. Non-Newtonian Fluid Mech. 44, 1992, 15-36.Google Scholar
  4. Blatz, P.J. and Ko,W.L., 'Application of finite elastic theory to the deformation of rubbery materials', Trans. Soc. Rheol. 6, 1962, 223-251.Google Scholar
  5. Chang, W.V., Bloch, R. and Tschoegl, N.W., 'Study of the viscoelastic behavior of uncrosslinked (gum) rubbers in moderately large deformations', J. Polymer Sci., Polymer Phys. Ed. 15, 1977, 923-944.Google Scholar
  6. Clayton, D., Darlington, M.W. and Hall, M.M., 'Tensile creep modulus, creep lateral contraction ratio and torsional creep measurements on small nonrigid specimens', J. Phys. E: Sci. Instr. 6, 1973, 218-226.Google Scholar
  7. Crowson, R.J. and Arridge, R.G.C., 'Linear viscoelastic properties of epoxy resin polymers in dilatation and shear in the glass transition region. 1. Time-temperature Superposition of creep data', Polymer 20, 1979a, 737-746.Google Scholar
  8. Crowson, R.J. and Arridge, R.G.C., 'Linear viscoelastic properties of epoxy resin polymers in dilatation and shear in the glass transition region: 2. Measurement of the glass transition temperature', Polymer 20, 1979b, 747-754.Google Scholar
  9. Darlington, M.W. and Saunders, D.W., 'The tensile creep behaviour of cold-drawn low-density polyethylene', J. Phys. D: Appl. Phys. 3, 1970, 535-549.Google Scholar
  10. Delin, M., Rychwalski, R.W., Kubát, M.J. and Kubát, J., 'Volume changes during stress relaxation in polyethylene', Rheol. Acta 34, 1995, 182-195.Google Scholar
  11. Deng, T.H. and Knauss, W.G., 'The temperature and frequency dependence of the bulk compliance of poly(vinyl acetate). A re-examination', Mech. Time-Dependent Mater. 1, 1997, 33-49.Google Scholar
  12. Emri, I. and Tschoegl, N.W., 'Generating line spectra from experimental responses. Part I: Relaxation modulus and creep compliance', Rheol. Acta 32, 1993, 311-321.Google Scholar
  13. Emri, I. and Tschoegl, N.W., 'Generating line spectra from experimental responses. Part IV: Application to experimental data', Rheol. Acta 33, 1994, 60-70.Google Scholar
  14. Emri, I. and Tschoegl, N.W., 'An iterative computer algorithm for generating line spectra from linear viscoelastic response functions', Internat. J. Polym. Mater. 40, 1998, 55-79.Google Scholar
  15. Emri, I., Nikonov, A. and Tschoegl, N.W., 'Numerical errors in the interconversion of creep and relaxation functions', Rheol. Acta, 2002, to be submitted.Google Scholar
  16. Eringen, A.C., Non-Linear Theory of Continuous Media, McGraw-Hill, New York, 1962, 177.Google Scholar
  17. Fedors, R.F. and Hong, S.D., 'A new technique for measuring Poisson's ratio', J. Polym. Sci., Polym. Phys. Ed. 20, 1982, 777-781.Google Scholar
  18. Fellahi, B., Fisa, B. and Favis, B.D., 'Welding strength in injection molded HDPE/PA6 blends. Influence of interfacial modification', J. Appl. Polym. Sci. 57, 1995, 1319-1332.Google Scholar
  19. Ferry, J.D., Viscoelastic Properties of Polymers, 3rd edn, John Wiley and Sons, New York, 1980.Google Scholar
  20. Fisa, B., Favis, B.D. and Bourgeois, S., 'Injection molding of polypropylene/polycarbonate blends', Polym. Engrg. Sci. 30, 1990, 1051.Google Scholar
  21. Freudenthal, A.M. and Henry, L.A., 'On Poisson's ratio in linear viscoelastic propellants', Progr. Aeronautics Rocketry 1, 1960, 33-66. 34-66.Google Scholar
  22. Gent, A.N. and Hwang, Y.-C., 'Elastic behavior of a double layer bonded between two rigid spheres', Rubber Chem. Tech. 61, 1988, 630-638.Google Scholar
  23. Gilmour, I.W., Trainor, A. and Haward, R.N., 'Elastic moduli of glassy polymers at low strains', J. Appl. Polym. Sci. 23, 1979, 3129-3138.Google Scholar
  24. Giovagnoni, M., 'On the direct measurement of the dynamic Poisson's ratio', Mech. Mater. 17, 1994, 33-46.Google Scholar
  25. Harris, J.A. and Adams, R.D., 'Strength predictions of bonded single loop joints by non-linear FEM', Internat. J. Adhesion Adhesives 4, 1984, 65-78.Google Scholar
  26. Häusler K.G., Hauptmann, P., Meischner, C., Fedtke, M., Hartel, E. and Wartewig, S., 'Ultrasonic investigations of modified epoxies', Polym. Commun. 28, 1987, 154-157.Google Scholar
  27. Heydemann, P., 'On the minimum of Poisson's ratio in polymers', Kolloid-Z. u. Z. f. Polymere 193, 1963, 12-15.Google Scholar
  28. Hopkins, I.L. and Hamming, R.W., 'On creep and relaxation', J. Appl. Phys. 28, 1957, 906.Google Scholar
  29. Karger-Kocsis, J. and Csikai, I., 'Skin-core morphology and failure of injection-molded specimens of impact-modified polypropylene blends', Polym. Engrg. Sci. 27, 1987, 241.Google Scholar
  30. Kästner, S. and Pohl, G., 'Ein Beitrag zur Frage der vollständigen Erfassung des mechanischen Relaxationsverhaltens der Polymeren', Kolloid-Z. u. Z. f. Polymere 191, 1963, 114.Google Scholar
  31. Kimoto M., Nagata, I., Minowa, A., Moriwaki, K. and Watanabe, T., 'Evaluation of disbondings and measurement of Poisson's ratio for plastic composites using holographic interferometry', J. Appl. Polym. Sci. 40, 1990, 1085-1093.Google Scholar
  32. Kinloch, A.J., Adhesion and Adhesives, Chapman and Hall, London, 1990.Google Scholar
  33. Knauss, W.G., 'The investigation of the mechanical properties of thermoviscoelastic materials', Soc. Exp. Mech. 1, 1992, 22-26 (Proceedings of the VII International Congress on Experimental Mechanics, Las Vegas, NV).Google Scholar
  34. Knauss,W.G. and Emri, I., 'Non-linear viscoelasticity based on free volume consideration', Comput, & Structures 13, 1981, 123-128; also in: Computational Methods in Nonlinear Structure and Solid Mechanics, A.K. Noor and H.G. McComb (eds), Pergamon Press, Oxford, 1981, 123-128.Google Scholar
  35. Kono, R., 'The dynamic bulk viscosity of polystyrene and polymethyl methacrylate', J. Phys. Soc. Japan 15(4), 1960, 718-725.Google Scholar
  36. Kono, R., 'The dynamic bulk and shear viscosity of high polymers. I', J. Phys. Soc. Japan 16, 1961a, 1580-1586.Google Scholar
  37. Kono, R., 'The dynamic bulk and shear viscosities of polyvinylchloride', J. Phys. Soc. Japan 16, 1961b, 1793-1794.Google Scholar
  38. Kono, R. and Yoshizaki, H., 'Viscoelastic properties of polyvinyl-i-butyl ethers at high frequencies', Japan J. Appl. Phys. 12(3), 1973, 445-457.Google Scholar
  39. Koppelmann, V.J., 'Ñber den dynamischen Elastizitätsmodul von Polymethacrylsäuremethylester bei sehr tiefen Frequenzen', Kolloid-Z. 164, 1959, 31-34.Google Scholar
  40. Kubát, M.J., Vernel, J., Rychwalski, R.W. and Kubát, J., 'Bulk moduli from physical aging and stress relaxation data', Polym. Engrg. Sci. 38(8), 1998, 1261.Google Scholar
  41. Kugler, H.P., Stacer, R.G. and Steimle, C., 'Direct measurements of Poisson's ratio in elastomers', Rubber Chem. Tech. 63, 1990, 473-487.Google Scholar
  42. Ladizesky, N.H. and Ward, I.M., 'Determination of Poisson's ratio and Young's modulus of lowdensity polyethylene', J. Macromol. Sci.-Phys. B5(4), 1971, 661-692.Google Scholar
  43. Laufer, Z., Diamant, Y., Gill, M. and Fortuna, G., 'A simple dilatometric method for determining Poisson's ratio of nearly incompressible elastomers', Internat. J. Polym.Mater. 6, 1978, 159-174.Google Scholar
  44. Lee, E.H., 'Viscoelastic stress analysis', in Structural Mechanics, J.N. Goodier and N.J. Hoff (eds), Pergamon Press, Oxford, 1960, 456-482.Google Scholar
  45. Lobdell, A.J., Shinopulos, G.F. and Fillio, D.N., 'An instrument to measure transverse strain', Mater. Res. Stand. 4, 1964, 8-11.Google Scholar
  46. Lu, H., Zhang, X. and Knauss, W.G., 'Uniaxial, shear and Poisson relaxation and their conversion to bulk relaxation', Polymer Composites 18(2), 1997, 211-222; J. Polym. Sci. Engrg. 37(6), 1997, 1053-106.Google Scholar
  47. Malvern, L.E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, NJ, 1969, 293.Google Scholar
  48. Michaeli, W. and Dassow, J., 'Describing Poisson's ratio of thermoplastics as a non-linear viscoelastic parameter', in Proceedings 52nd Annual Technical Conference, ANTEC '94, San Francisco, CA, Society of Plastic Engineers, Brookfield, 1994, 1804-1806. Reprinted in British Plastics and Rubber, MCM Publishing, London, 1995, 21-24.Google Scholar
  49. Migwi, C.M., Darby, M.I., Wolstenholm, G.H., Yates, B., Duffy, R. and Moss, M., 'A method for determining the shear modulus and Poisson's ratio of polymer materials', J. Mater. Sci. 29, 1994, 3430-3432.Google Scholar
  50. Morita, E., Kono, R. and Yoshizaki, H., 'Bulk and shear relaxation processes in poly-i-butyl methacrylate', Japan J. Appl. Phys. 7(5), 1968, 451-461.Google Scholar
  51. Nikonov, A., Tschoegl, N.W. and Emri, I., 'Numerical errors in the interconversion of creep and relaxation functions', Rheol. Acta, 2001, submitted.Google Scholar
  52. Onogi, S. and Ui, K., 'Frequency and temperature dispersions of high polymers', J. Colloid Sci. 11, 1956, 214.Google Scholar
  53. Philippoff, W. and Brodnyan, J., 'Preliminary results in measuring dynamic compressibilities', J. Appl. Phys. 26(7), 1955, 846-849.Google Scholar
  54. Richardson, I.D. and Ward, I.M., 'Temperature dependence of the Poisson's ratios in low-density polyethylene with parallel lamellas morphology', J. Polym. Sci. Polym. Phys. Ed. 16, 1978, 667-678.Google Scholar
  55. Rigby, Z., 'Phase shifts in stress-strain relationships of viscoelastic materials', Rheol. Acta 5, 1965, 28-29.Google Scholar
  56. Rigbi, Z., 'The value of Poisson's ratio of viscoelastic materials', Appl. Polym. Symp. 5, 1967, 1-8.Google Scholar
  57. Samarin, M., Tschoegl, N.W. and Emri, I., 'The simultaneous determination of Young's modulus and the viscoelastic Poisson's ratio', Mech. Time-Dependent Mater., 2002, to be submitted.Google Scholar
  58. Sane, S. and Knauss,W.G., 'The time-dependent bulk response of poly(methyl methacrylate)', Mech. Time-Dependent Mater. 5, 2001, 293-324.Google Scholar
  59. Smith, T.L., 'Volume changes and dewetting in glass bead-Polyvinyl chloride elastomeric composites under large deformations', Trans. Soc. Rheol. 3, 1959, 113-136.Google Scholar
  60. Summerscales, J. and Fry, S.A., 'Poisson's ratio in fibre-reinforced polymer composites with a high void content', J. Mater. Sci. Lett. 13, 1994, 912-914.Google Scholar
  61. Theocaris, P.S., 'Creep and relaxation contraction ratio of linear viscoelastic materials', J. Mech. Phys. Solids 12, 1964, 125-138.Google Scholar
  62. Thomson, K.C., 'On the complex Poisson's ratio of a urethane rubber compound', J. Appl. Polym. Sci. 10, 1966, 1133-1136.Google Scholar
  63. Tschoegl, N.W., The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Heidelberg, 1989.Google Scholar
  64. Tschoegl, N.W., 'Time dependence in material properties: An overview', Mech. Time-Dependent Mater. 1, 1997, 1-31.Google Scholar
  65. Tschoegl, N.W. and Emri, I., 'Generating line spectra from experimental responses. Part III: Interconversion between relaxation and retardation behavior', Internat. J. Polym. Mater. 18, 1992, 117-127.Google Scholar
  66. Tschoegl, N.W. and Emri, I., 'Generating line spectra from experimental responses. Part II: Storage and loss functions', Rheol. Acta 32, 1993, 322-327.Google Scholar
  67. Tschoegl, N.W., Knauss, W.G. and Emri, I., 'The effect of temperature and pressure on the mechanical properties of thermo-and/or piezorheologically simple polymeric materials in thermodynamic equilibrium-A critical review', Mech. Time-Dependent Mater. 6, 2002, 53-99.Google Scholar
  68. Tsou, A.H., Greener, J. and Smith, G.D., 'Stress relaxation of polymer films in bending', Polymer 36(5), 1995, 949-954.Google Scholar
  69. van der Varst, P.G.Th. and Kortsmit,W.G., 'Notes on the lateral contraction of linear isotropic viscoelastic materials', Appl. Mech. 62, 1992, 338-346.Google Scholar
  70. Waterman, H.A., 'Determination of the complex moduli of viscoelastic materials with the ultrasonic pulse method (Part I)', Kolloid-Z. u. Z. f. Polymere 192, 1963a, 1-8.Google Scholar
  71. Waterman, H.A., 'Determination of the complex moduli of viscoelastic materials with the ultrasonic pulse method (Part II)', Kolloid-Z. u. Z. f. Polymere 192, 1963b, 9-16.Google Scholar
  72. Waterman, H.A., 'Relation between loss angles in isotropic linear viscoelastic materials', Rheol. Acta 16, 1977, 31-42.Google Scholar
  73. Weber, H., Wolf, T. and Dünger, U., 'Determination of relaxation moduli and Poisson's ratio in uniaxially loaded solid polyethylene foam specimens as part of full material characterization', Mech. Time-Dependent Mater. 1, 1997, 195-208.Google Scholar
  74. Wilson, I., Cunningham, A. and Ward, I.M., 'The determination of Poisson's ratio compliances for polyethylene terephthalate sheets using a Michelson interferometer', J. Mater Sci. 11, 1976, 2181-2188.Google Scholar
  75. Wilson, I., Ladizesky, N.H. and Ward, I.M., 'The determination of Poisson ratio and extensional modulus for polyethylene terephthalate sheets by an optical technique', J. Mater. Sci. 11, 1976, 2177-2180.Google Scholar
  76. Yee, A.F., 'Dynamic-mechanical studies of some polymers containing the bisphenol-A units', ACS Polymer Preprints 21(2), 1980, 285-286.Google Scholar
  77. Yee, A.F. and Takemori, M.T., 'A new technique for measuring volume and shear relaxation in solid polymers: Dynamic Poisson's ratio', ACS Polymer Preprints 20(1), 1979, 758-761.Google Scholar
  78. Yee, A.F. and Takemori, M.T., 'Dynamic bulk and shear relaxation in glassy polymers. I. Experimental techniques and results on PMMA', J. Polym. Sci., Polym. Phys. Ed. 20, 1982, 205-224.Google Scholar
  79. Zihlif, A.M., Duckett, R.A. and Ward, I.M., 'The determination of the lateral compliances and Poisson's ratios for highly oriented polyethylene sheets', J. Mater. Sci. 17, 1982, 1125-1130.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • N.W. Tschoegl
    • 1
  • Wolfgang G. Knauss
    • 2
  • Igor Emri
    • 2
  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations