Journal of Electroceramics

, Volume 7, Issue 3, pp 143–167 | Cite as

Conduction Model of Metal Oxide Gas Sensors

  • Nicolae Barsan
  • Udo Weimar


Tin dioxide is a widely used sensitive material for gas sensors. Many research and development groups in academia and industry are contributing to the increase of (basic) knowledge/(applied) know-how. However, from a systematic point of view the knowledge gaining process seems not to be coherent. One reason is the lack of a general applicable model which combines the basic principles with measurable sensor parameters.

The approach in the presented work is to provide a frame model that deals with all contributions involved in conduction within a real world sensor. For doing so, one starts with identifying the different building blocks of a sensor. Afterwards their main inputs are analyzed in combination with the gas reaction involved in sensing. At the end, the contributions are summarized together with their interactions.

The work presented here is one step towards a general applicable model for real world gas sensors.

metal oxide gas sensors conduction model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Sberveglieri, Sensors and Actuators B, 6, 239 (1992).Google Scholar
  2. 2.
    N. Bâ rsan, Sensors and Actuators B, 17, 241 (1994).Google Scholar
  3. 3.
    M. Bauer, N. Bâ rsan, K. Ingrisch, A. Zeppenfeld, I. Denk, B. Schuman, U.Weimar, and W. Göpel, Proc. of the 11th European Microelectronic Conference (1997).Google Scholar
  4. 4.
    U. Hoefer, K. Steiner, and E. Wagner, Sensors and Actuators B, 26/27, 59 (1995).Google Scholar
  5. 5.
    S.R. Morrison, The Chemical Physics of Surfaces, 2nd edn. (Plenum Press, New York, 1990).Google Scholar
  6. 6.
    G. Heiland and D. Kohl, in Chemical Sensor Technology, Vol. 1, edited by T. Seiyama (Kodansha, Tokyo), Ch. 2, pp. 15-38.Google Scholar
  7. 7.
    V.A. Henrich and P.A. Cox, The Surface Science of Metal Oxides (University Press, Cambridge, 1994), pp. 312-316.Google Scholar
  8. 8.
    M. Egashira, M. Nakashima, and S. Kawasumi, J. Chem. Soc. Chem. Comm. 1047 (1981).Google Scholar
  9. 9.
    N. Bâ rsan and R. Ionescu, Sensors and Actuators B, 12, 71 (1993).Google Scholar
  10. 10.
    S. Lenaerts, M. Honore, G. Huyberechts, J. Roggen, and G. Maes, Sensors and Actuators B, 18/19, 478 (1994).Google Scholar
  11. 11.
    A. Broniatowski, in Polycrystalline Semi-Conductors, edited by G. Harbeke (Springer Solid State Sciences Series, Vol. 57), (Hardcover-April 1985).Google Scholar
  12. 12.
    A. Broniatowski, in Polycrystalline Semi-Conductors, edited by G. Harbeke (Springer Solid State Sciences Series, Vol. 57), (Hardcover-April 1985).Google Scholar
  13. 13.
    R. Stratton, Proc. Phys. Soc. B, 69, 513 (1956).Google Scholar
  14. 14.
    A. Many, Y. Goldstein, and N.B. Grover, Semiconductor Surfaces (Interscience, New York, 1965), p. 308.Google Scholar
  15. 15.
    H. Geistlinger, I. Eisele, B. Flietner, and R.Winter, Sensors and Actuators B, 34, 499-505 (1996).Google Scholar
  16. 16.
    A.F. Hollemann and E. Wieberg, Lehrbuch der Anorganischen Chemie, 101th edn. (Walter de Gruyter, Berlin, 1995), p. 1592.Google Scholar
  17. 17.
    M. Schweizer-Berberich, PhD Thesis, Universität Tübingen, 1998.Google Scholar
  18. 18.
    W. Göpel and K.D. Schierbaum, Sensors and Actuators B, 26/27, 1 (1995).Google Scholar
  19. 19.
    S. Lenaerts, J. Roggen, and G. Maes, Spectrochimica Acta Part A-Molecular Spectroscopy, 51, 883 (1995).Google Scholar
  20. 20.
    J.P. Joly, L. Gonszalez-Cruz, and Y. Arnaud, Bulletin de la Société Chimique de France, 11 (1986).Google Scholar
  21. 21.
    B. Gillot, C. Fey, and D. Delafosse, Journal of Chemical Physics, 73, 19 (1976).Google Scholar
  22. 22.
    N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci., 86, 335 (1979).Google Scholar
  23. 23.
    A.M. Volodin and A.E. Cherkasin, Reac. Kinet. Catal. Lett., 17, 329 (1981).Google Scholar
  24. 24.
    S.C. Chang, J. Vac. Sci. Technol., 17, 366 (1980).Google Scholar
  25. 25.
    D. Kohl, in Gas Sensors edited by, G. Sberveglieri (Kluwer, Dordrecht, 1992) ch. 2, p. 43.Google Scholar
  26. 26.
    M. Egashira, M. Nakashima, and S. Kawasumi, J. Chem. Soc. Chem. Comm., 1047 (1981).Google Scholar
  27. 27.
    K. Morishige, S. Kittaka, and T. Morimoto, Bull. Chem. Soc. Japan, 53, 2128 (1980).Google Scholar
  28. 28.
    A. Guest, PhD Thesis University of Nottingham, 1985.Google Scholar
  29. 29.
    E.W. Thornton and P.G. Harrison, J. Chem. Soc. Faraday Trans., 71, 461 (1975).Google Scholar
  30. 30.
    F. Berger, E. Beche, R. Berjoan, D. Klein, and A. Chambaudet, Applied Surf. Sci., 93, 9 (1996).Google Scholar
  31. 31.
    J.F. Boyle and K.A. Jones, Electron. Mater. 6, 717 (1977).Google Scholar
  32. 32.
    S.J. Gentry and T.A. Jones, Sensors and Actuators, 10, 141 (1986).Google Scholar
  33. 33.
    H. Windischmann and P. Mark, J. Electrochem. Soc.: Solid-State Sci. Technol., 126, 672 (1979).Google Scholar
  34. 34.
    M.J. Willett, in Techniques and Mechanisms D.E. Williams and in Gas Sensing, Vol. 3, edited by P.T. Moseley, J.O.W. Norris (Adam Hilger, Bristol, 1991), p. 61.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Nicolae Barsan
    • 1
  • Udo Weimar
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryUniversity of TuebingenTübingenGermany

Personalised recommendations