Advertisement

Journal of Materials Science

, Volume 37, Issue 5, pp 1043–1047 | Cite as

Bonding character of the boron-doped C60 films prepared by radio frequency plasma assisted vapor deposition

  • Y. J. Zou
  • X. W. Zhang
  • Y. L. Li
  • B. Wang
  • H. Yan
  • J. Z. Cui
  • L. M. Liu
  • D. A. Da
Article

Abstract

Boron-doped C60 thin films were synthesized firstly by a radio frequency plasma assisted vapor deposition technique using C60 as a precursor. The surface morphology of the samples was observed by atomic force microscopy, and their chemical bonding characters were investigated by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The results show that the boron atoms are incorporated into the fullerene molecules in the samples, and the boron heterofullerene C60−nB n was synthesized. Plasma polymerized C60 molecules were also found in the samples besides the boron heterofullerene. The effects of radio frequency power and the substrate position on the growth of the B-doped C60 films were studied. The results indicate that the higher energies and densities of the reactive radicals in the plasma are favorable for the formation of the boron heterofullerene C60−nB n or polymerized C60 molecules.

Keywords

Fourier Transform Boron Atomic Force Microscopy Fullerene Radio Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. ZHU, D. E. COX, J. E. FISCHER, K. KNIAZ, A.R. MCGHIE and O. ZHOU, Nature 355 (1992) 712.Google Scholar
  2. 2.
    J. E. FISCHER, Mater. Sci. Eng. B 19 (1993) 90.Google Scholar
  3. 3.
    K. A. YEE, K. R. HAN, C. H. KIM and C. H. PRUN, J. Phys. Chem. A 101 (1997) 5692.Google Scholar
  4. 4.
    M. J. ROSSEINSKY, D. W. MURPHY, R. M. FLEMING, R. TYCKO, A. P. RAMIREZ, T. SIEGRIST, G. DABBAGH and S. E. BARRETT, Nature 356 (1992) 416.Google Scholar
  5. 5.
    W. ANDREONI, F. GYGI and M. PARRINELLO, Chem. Phys. Lett. 190 (1992) 159.Google Scholar
  6. 6.
    S.-H. WANG, F. CHEN, Y.-C. FANN, M. KASHANI, M. MALATY and S. A. JANSEN, J. Phys. Chem. 99 (1995)6801.Google Scholar
  7. 7.
    J. C. HUMMELEN, B. KNIGHT, J. PAVLOVICH, R. GONZALES and F. WUDL, Science 269 (1995) 1554.Google Scholar
  8. 8.
    N. L. CLIPSTON, T. BROWN, Y. Y. VASIL'EV, M.P. BARROW, R. HERZSCHUH, U. REUTHER, A. HIRSCH and T. DREWELLO, J. Phys. Chem. A 104 (2000) 9171.Google Scholar
  9. 9.
    T. GUO, C. JIN and R. E. SMALLEY, ibid. 95 (1991) 4948.Google Scholar
  10. 10.
    H. J. MUHR, R. NESPER, B. SCHNYDER and R. KOTZ, Chem. Phys. Lett. 249 (1996) 399.Google Scholar
  11. 11.
    B. P. CAO, X. H. ZHOU, Z. J. SHI, Z. N. GU, H.Z. XIAO and J. Z. WANG, Fullerene Sci Technol 6 (1998) 639.Google Scholar
  12. 12.
    P. HARTMAN and W. G. PERDOK, Acta Cryst. 8 (1955) 49, 521.Google Scholar
  13. 13.
    H. YANAGI and T. SASAKI, Appl. Phys. Lett. 65 (1994) 1222.Google Scholar
  14. 14.
    Y. KIM, L. JIANG, T. IYODA, K. HASHIMOTO and A. FUJISHIMA, Appl. Surf. Sci. 130 (1998) 602.Google Scholar
  15. 15.
    G. GENSTERBLUM, K. HEVESI, B. Y. HAN, L.M. YU, J. J. PIREAUX, P. A. THIRY, R. CAUDANO, A. A. LUCAS, D. BERNAERTS, S. AMELINCKX, G. VANTENDELOO, G. BENDELE, T. BUSLAPS, R.L. JOHNSON, M. FOSS, R. FEIDENHANSL and G. LELAY, Phys. Rev. B 50 (1994) 11981.Google Scholar
  16. 16.
    M. O. WATANABE, S. ITOH and K. MIZUSHIMA, Appl. Phys. Lett. 68 (1996) 2962.Google Scholar
  17. 17.
    H. KUNZLI, P. GANTENBEIN, R. STEINER and P. OELHAFEN, Fresen. J. Anal. Chem. 346 (1993) 41.Google Scholar
  18. 18.
    W. E. MODDEMAN, A. R. BOURKE, W. B. BOWLING and D. S. FOOSE, Surf. Interface Anal. 14 (1989) 224.Google Scholar
  19. 19.
    A. ANNEN, M. SASS, R. BECKMANN, A. VON KEUDELL and W. JACOB, Thin Solid Films 312 (1998) 147.Google Scholar
  20. 20.
    P. ZHOU, A. M. RAO, K. A. WANG, J. D. ROBERTSON, C. ELOI, M. S. MEIER, S. L. REN, X. X. BI, P.C. EKLUND and M. S. DRESSELAUS, Appl. Phys. Lett. 60 (1992) 2871.Google Scholar
  21. 21.
    Y. B. ZHAO, D. M. POIRIER, R. J. PECHMAN and J.H. WEAVER, ibid. 64 (1994) 577.Google Scholar
  22. 22.
    Y. IWASA, T. ARIMA, R. M. FLEMING, T. SIEGRIST, O. ZHOU, R. C. HADDON, L. J. ROTHBERG, K.B. LYONS, H. L. CARTER, A. F. HEBARD, R. TYCKO, G. DABBAGH, J. J. KRAJEWSKI, G. A. THOMAS and T. YAGI, Science 264 (1994) 1570.Google Scholar
  23. 23.
    N. TAKAHASHI, H. DOCK, N. MATSUZAWA and M. ATA, J. Appl. Phys. 74 (1993) 5790.Google Scholar
  24. 24.
    M. ATA, N. TAKAHASHI and K. NOJIMA, J. Phys. Chem. 98 (1994) 9960.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Y. J. Zou
    • 1
  • X. W. Zhang
    • 1
  • Y. L. Li
    • 1
  • B. Wang
    • 1
  • H. Yan
    • 1
  • J. Z. Cui
    • 2
  • L. M. Liu
    • 2
  • D. A. Da
    • 2
  1. 1.School of Material Science & EngineeringBeijing Polytechnic UniversityBeijingPeoples Republic of China
  2. 2.Lanzhou Institute of PhysicsChinese Academy Space TechnologyLanzhouPeoples Republic of China

Personalised recommendations