Acta Applicandae Mathematica

, Volume 69, Issue 3, pp 243–283 | Cite as

A New Way to Represent Links. One-Dimensional Formalism and Untangling Technology

  • I. A. Dynnikov


An alternative link representation different from planar diagrams is discussed. Isotopy classes of unordered nonoriented links are realized as central elements of a monoid presented explicitly by a finite number of generators and relations. The group presented by two generators and three relations [[a,b],a2ba−2]=[[a,b],b2ab−2]=[[a,b],[a−1,b−1]]=1, where [x,y]=xyx−1y−1, is proved to have a commutator subgroup isomorphic to the braid group on infinitely many strands. A new partial algorithm for unknot recognition is constructed. Experiments show that the algorithm allows the untangling of unknots whose planar diagram has hundreds of crossings. Here 'untangling' means 'finding an isotopy to the circle'.

link representation isotopy knot theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brunn, H.: Uber verknotete Kurven, Mathematiker-Kongresses Zurich 1897, Leipzig, 1898, 256–259.Google Scholar
  2. 2.
    Cromwell, P. R. and Nutt, I. J.: Embedding knots and links in an open book. II: Bounds on arc index, Math. Proc. Cambridge Philos. Soc. 119(2)(1996), 309–319.Google Scholar
  3. 3.
    Morton, H. R. and Beltrami, E.: Arc index and the Kauffman polynomial, Math. Proc. Cambridge Philos. Soc. 123 (1998), 41–48.Google Scholar
  4. 4.
    Haken, W.: Theorie der Normalflächen. Ein Isotopiekriterium für der Kreisknoten, Acta Math. 105 (1961), 245–375.Google Scholar
  5. 5.
    Birman, J. S. and Hirsch, M. D.: A new algorithm for recognizing the unknot, Geom. Topol. 2 (1998), 175–220.Google Scholar
  6. 6.
    Matveev, S. V.: Computer recognition of three-manifolds, Experimental Math. 7(2) (1998), 153–161.Google Scholar
  7. 7.
    Dynnikov, I. A.: Three-page approach to knot theory. Encoding and local moves, Funct. Anal. Appl. 33(4) (1999), 260–269.Google Scholar
  8. 8.
    Dynnikov, I. A.: Three-page approach to knot theory. Universal semigroup, Funct. Anal. Appl. 34(1) (2000), 24–32.Google Scholar
  9. 9.
    Dynnikov, I. A.: Three-page link presentation and an untangling algorithm, In: Proc. International Conference 'Low-Dimensional Topology and Combinatorial Group Theory', Chelyabinsk, August 1999, Kiev, 2000, pp. 112–130.Google Scholar
  10. 10.
    Kauffman, L. H.: State models and the Jones polynomial, Topology 26(3) (1987), 395–407.Google Scholar
  11. 11.
    Kauffman, L. H.: An invariant of regular isotopy, Trans. Amer. Math. Soc. 318(2) (1990), 417–471.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • I. A. Dynnikov
    • 1
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations