Neurochemical Research

, Volume 26, Issue 12, pp 1305–1310 | Cite as

Effect of Dithiol Chelating Agents on [3H]MK-801 and [3H]Glutamate Binding to Synaptic Plasma Membranes

  • C. W. Nogueira
  • J. B. T. Rocha
  • D. O. Souza


2,3-Dimercaptopropanol (BAL- British Anti-Lewesite) is a dithiol chelating agent used for the treatment of heavy metal poisoning, however, BAL can produce neurotoxic effects in a variety of situations. Based on the low therapeutic efficiency of BAL other dithiols were developed and DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercaptopropane-1-sulfonic acid) are becoming used for treatments of humans exposed to heavy metals. In the present investigation the effect of dithiols in the glutamatergic system was examined. The results showed that BAL inhibited [3H]MK-801 and [3H]glutamate binding in a concentration-dependent manner. At 100 μM BAL and DMSA caused a significantly inhibition of [3H]MK-801 binding to brain membranes (p < 0.05 by Duncan's multiple range test). BAL at 100 μM caused an inhibition of 40% on [3H]glutamate binding. DMPS and DMSA had no significant effect on [3H]glutamate binding. Dithiotreitol (DTT), abolished the inhibitory effect of BAL on [3H]MK-801 binding. The protection exerted by DTT suggests that BAL inhibit [3H]MK-801 binding by interacting with cysteinyl residues that are important for redox modulation of receptor responses. ZnCl2 inhibited [3H]glutamate and [3H]MK-801 binding to brain synaptic membrane; nevertheless, the inhibitory effect was slight more accentuated for [3H]MK-801 than [3H]glutamate binding (p < 0.05). The inhibition caused by 10 μM ZnCl2 on [3H]MK-801 binding was attenuated by BAL. The findings present in this study may provide the evidence that BAL affect the glutamatergic system and these effects can contributed to explain, at least in part, why BAL, in contrast to DMPS and DMSA is neurotoxic.

Glutamate neurotoxicity dithiol chelating agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kosnett, M. J. 1992. Unanswered questions in metal chelation. Clinical Toxicology 30:529–547.Google Scholar
  2. 2.
    Kazantzis, G. 1986. Diagnosis and treatment of metal poisoning-general aspects. In: Handbook on the Toxicology of Metals. Eds Friberg, L. Nordberg, G. F. & Vouk, V. B., 309–311. Amsterdam, Elsevier.Google Scholar
  3. 3.
    Klaassen, C. D. 1990. Heavy metals and heavy-metals antagonists. In: The Pharmacological Basis of Therapeutics, eds Gilman, A. G.; Rall, T. W; Nies, A. S. & Taylor, P. 1592–1614. New York: Pergamon Press.Google Scholar
  4. 4.
    Singer, A. J., Mofenson, H. C., Caraccio, T. R., and Ilasi, J. 1994. Mercuric chloride poisoning due to ingestion of a stool fixative. J. Toxicol. Clin. Toxicol. 32:577–582.Google Scholar
  5. 5.
    Schwartz, J. G., Snider, T. E., and Montiel, M. M. 1992. Toxicity of a family from vacuumed mercury. Am. J. Emerg. Med. 10:258–261.Google Scholar
  6. 6.
    Aposhian, H. V., Maiorino, R. M., Gonzales-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurbult, K. M., Jnco-Munoz, J., Dart, R. C., and Aposhian, M. M. 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97:23–28.Google Scholar
  7. 7.
    Aaseth, J. 1983. Recent advance in the therapy of metal poisonings with chelating agents. Human Toxicology 2:257–272.Google Scholar
  8. 8.
    Emanuelli, T., Rocha, J. B. T., Pereira, M. E., Porciuncula, L. O., Morsch, V. M., Martins, A. F., and Souza, D. O. 1996. Effect of mercuric chloride intoxication and dimercaprol treatment on aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol. Toxicol. 79:138–143.Google Scholar
  9. 9.
    Pepin, J., Milord, F., Khonde, N., Niyonsenga, T., Loko, L., Mpia, B., and Dewals, P. 1995. Risk-factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma-Brucel-Gambiense sleeping sickness. Transactions of the Royal Society of Tropical Medicine and Hygiene 89:92–97.Google Scholar
  10. 10.
    Jennings, F. W., Chauvioro, G., Viodo, C., and Murray, M. 1996. Topical chemotherapy for experimental African trypanosomiasis with cerebral involvement: The use of melarsoprol combined with the 5-nitroimidazole, magazol. Tropical Medicine & International Health 1:363–366.Google Scholar
  11. 11.
    Jennings, F. W., Atouguia, J. M., and Murray, M. 1996. Topical chemotherapy for experimental murine African CNS-trypanosomiasis: The successful use of the arsenical, melarsoprol combined with the 5-nitroimidazole, fexinidazole or MK-436. Tropical Medicine & International Health 1:590–598.Google Scholar
  12. 12.
    Madonia, P. and Pallazzoadriano, M. 1965. Eccitazione centrale da molecole a strutura tiolica. Bollettino della Societa Italiana di Biologia Sperimentale. 6:295–297.Google Scholar
  13. 13.
    Nogueira, C. W., Soares, F. A., Bolzan, R. C., Jacques-Silva, M. C., Souza, D. O., and Rocha, J. B. T. 2000. Investigations into the mechanism of 2,3-dimercaptopropanol neurotoxicity. Neurochem. Res. 25:1553–1558.Google Scholar
  14. 14.
    Aaseth, J., Jacobensem, D., Andersen, O., and Wickstrom, E. 1995. Treatment of mercury and lead poisoning with dimercaptosuccinic acid and sodium dimercaptopropanosulfate. Analyst. 120:853–854.Google Scholar
  15. 15.
    Aposhian, H. V., Carter, D. E., Hoover, T. D., Hsu, C. A., Maiorino, R. M., and Stine, E. 1984. DMSA, DMPS and DMPA as arsenic antidotes. Fundam. Appl. Toxicol. 4:S58–S70.Google Scholar
  16. 16.
    Aposhian, H. V., Maiorino, R. M., Rivera, M., Bruce, D. C., Dart, R. C., Hurlbut, K. M., Levine, D. J., Zheng, W., Quintus, F., Carter, D. and Aposhian, M. M. 1992. Human studies with the chelating agents DMPS and DMSA. Clinical Toxicology 30:505–528.Google Scholar
  17. 17.
    Aposhian, M. M., Maiorino, R. M., Zhaofa, X., and Aposhian, H. V. 1996. Sodium 2,3-dimercapto-1-propanesulfonate (DMPS) treatment does not redistribute lead or mercury to the brain of rats. Toxicology 109:49–55.Google Scholar
  18. 18.
    Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as a final commom pathway for neurologic desorders. New. Eng. J. Med. 330:613–622.Google Scholar
  19. 19.
    Foster, A. C. and Fagg, G. E. 1987. Taking apart NMDA receptors. Nature 329:395–396.Google Scholar
  20. 20.
    Meldrum, B. and Garthwaite, J. 1992. Excitatory amino acid neurotoxicity and neurodegenerative disease. TIPS-The Pharmacology of Excitatory Amino Acids: A Special Report 54–62.Google Scholar
  21. 21.
    Rothman, S. M. and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.Google Scholar
  22. 22.
    Obrenovitch, T. P., Urenjak, J., Zilkha, E., and Jay, T. M. 2000. Excitotoxicity in neurological disorders-the glutamate paradox. Int. J. Devi. Neuroscience 18:281–287.Google Scholar
  23. 23.
    Aizenman, E., Lipton, S. A., and Loring, R. H. 1989. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 2:257–263.Google Scholar
  24. 24.
    Reynolds, I. J., Rush, E. A., and Aizenman, E. 1990. Reduction of NMDA receptors with dithiotreitol increases [3H]MK-801 binding and NMDA-induced Ca2+ fluxes. Br. J. Pharmacol. 101:178–182.Google Scholar
  25. 25.
    Sullivan, J. M., Traynelis, S. F., Chen, H. S., Escobar, W., Heinemann, S. F., and Lipton, S. A. 1994. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron. 13:929–936.Google Scholar
  26. 26.
    Ogita, K., Enomoto, R., Nakahara, F., Ishitsubo, N., and Yoneda, Y. 1995. A possible role of glutathione as an endogenous agonist at the N-methyl-D-Aspartate recognition domain in rat brain. J. Neuroch. 64:1088–1096.Google Scholar
  27. 27.
    Jones, D. H. and Matus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim. Biophys. Acta. 356:276–287.Google Scholar
  28. 28.
    Nogueira, C. W., Rotta, L. N., Perry, M. L., Perry, M. L., Souza, D. O., and Rocha, J. B. T. 2001. Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Research 906:157–163.Google Scholar
  29. 29.
    Lowry, H. O., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  30. 30.
    Emanuelli, T., Rocha, J. B. T., Pereira, M. E., Souza, D. O. G., and Beber, F. A. 1998. Aminolevulinate dehydratase inhibition by 2,3-dimercaptopropanol is mediated by chelation of zinc from a site involved in maintaining cysteinyl residues in a reduced state. Pharmacology & Toxicology 83:95–103.Google Scholar
  31. 31.
    Westbrook, L. G. and Mayer, M. L. 1987. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643.Google Scholar
  32. 32.
    Aizenman, E., Lipton, S. A., and Loring, R. H. 1989. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 2:1257–1263.Google Scholar
  33. 33.
    Lazarewicz, J. W., Wroblewski, J. T., Palmer, M. E., and Costa, E. 1989. Reduction of disulfide bonds activates NMDA-sensitive glutamate receptors in primary cultures of cerebellar granule cells. Neurosci. Res. Comm. 4:91–97.Google Scholar
  34. 34.
    Levy, D. I., Sucher, N. J., and Lipton, S. A. 1990. Redox modulation of NMDA receptor-mediated toxicity in mammalian central neurons. Neurosci. Lett. 110:291–296.Google Scholar
  35. 35.
    Vitarella, D., Mullaney, K. J., Albrecht, J., Kimbelberg, H. K., and Aschner, M. 1997. Stimulation of D-aspartate efflux by mercuric chloride from rat primary astrocyte cultures. Dev. Brain Res. 75:261–268.Google Scholar
  36. 36.
    Albrecht, J., Talbot, M., Kimelberg, H. K., and Aschner, M. 1993. The role of sulphydryl groups and calcium in the mercuric chloride-induced inhibition of glutamate uptake in rat primary astrocyte cultures. Brain Res. 607:249–254.Google Scholar
  37. 37.
    Frederickson, C. J. 1989. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 131:145.Google Scholar
  38. 38.
    Choi, D. W. and Koh, J. Y. 1998. Zinc and brain injury. Annu. Rev. Neurosci. 21:347–375.Google Scholar
  39. 39.
    Peters, S., Koh, J., and Choi, D. W. 1987. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236:589–593.Google Scholar
  40. 40.
    Koh, J. Y. and Choi, D. W. 1988. Zinc alters excitatory amino acid neurotoxicity on cortical neurons. J. Neurosci. 8:2164–2171.Google Scholar
  41. 41.
    Koh, J. Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y., and Choi, D. W. 1996. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016.Google Scholar
  42. 42.
    Nogueira C. W., Rotta, L. N., Tavares, R. G., Souza, D. O., and Rocha, J. B. T. 2001. BAL modulates glutamate transport in synaptosomes and synaptic vesicles from rat brain. NeuroReport 12:511–514.Google Scholar
  43. 43.
    Andersen, O. 1989. Oral cadmium exposure in mice: Toxicikinetics and efficiency of chelating agents. CRC Crit. Rev. Toxicol. 20:83–112.Google Scholar
  44. 44.
    Aposhian, H. V. and Aposhian, M. M. 1990. Meso-2,3-dimercaptosuccinic acid. Chemical, pharmacological and toxicological properties of an orally effective metal chelation agent. Annu. Rev. Pharmacol. Toxicology 30:279–306.Google Scholar
  45. 45.
    Endo, T. and Sakata, M. 1995. Effects of sulfhydryl compounds on the accumulation, removal and cytotoxicity of inorganic mercury by primary cultures of rat renal cortical epithelial cells. Pharmacology & Toxicology 76:190–195.Google Scholar
  46. 46.
    Kim, Y. H., Kim, E. Y., Gwag, B. J., Sohn, S., and Koh, J. Y. 1999. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience 89:175–182.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • C. W. Nogueira
    • 1
  • J. B. T. Rocha
    • 1
  • D. O. Souza
    • 2
  1. 1.Departamento de Quimica, Centro de Ciencias Naturais e ExatasUniversidade Federal de Santa MariaBrazil
  2. 2.Departamento de Bioquimica, Instituto de Ciencias Basicas da SaudeUniversidade Federal do Rio Grande do SulRio Grande do SulBrasil

Personalised recommendations