Advertisement

Journal of Low Temperature Physics

, Volume 126, Issue 5–6, pp 1501–1513 | Cite as

A Quantum-Dot Array as Model for Copper-Oxide Superconductors: A Dedicated Quantum Simulator for the Many-Fermion Problem

  • E. Manousakis
Article

Abstract

Quantum systems with a large number of fermionic degrees of freedom are intractable by quantum simulations. In this paper we introduce the concept of a dedicated quantum simulator (DQS) which is an artificial system of quantum dots whose Hamiltonian maps exactly to the original many fermion problem. While the universal quantum simulator (UQS) introduced by Feynman in 1982 can simulate any quantum mechanical many-body problem, a DQS can only solve a particular many body problem. Our concept of the dedicated quantum simulator is not a quantum computer but rather a quantum “analog” device, dedicated to a particular quantum computation. As an example, we consider the system of the CuO plane in the copper-oxide superconductors and we propose an array of electrostatically confined quantum dots to be used as its dedicated quantum simulator. We show that this dedicated device can be used to image stripe formation as a function of the electron doping using electric force microscopy. We argue that such a dedicated quantum simulator may be easier to realize in the future compared to a general purpose quantum computer.

Keywords

Quantum Computer Body Problem Electric Force Purpose Quantum Fermionic Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. P. DiVincenzo, Nature 393, 113 (1998). G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).Google Scholar
  2. 2.
    D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).Google Scholar
  3. 3.
    R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).Google Scholar
  4. 4.
    S. Lloyd, Science 273, 1073 (1996).Google Scholar
  5. 5.
    D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997).Google Scholar
  6. 6.
    D. A. Lidar and O. Biham, Phys. Rev. E 56, 3661 (1997).Google Scholar
  7. 7.
    J. D. Jackson, Classical Electrodynamics, J. Willey and Sons (1975).Google Scholar
  8. 8.
    S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996).Google Scholar
  9. 9.
    P. Hawrylak, Phys. Rev. Lett. 71, 3347 (1993).Google Scholar
  10. 10.
    J. J. Palacios, et al., Phys. Rev. B 50, 5760 (1994).Google Scholar
  11. 11.
    M. Stopa, Phys. Rev. B 54, 13767 (1996).Google Scholar
  12. 12.
    In-Ho Lee et al., Phys. Rev. B 57, 9035 (1998).Google Scholar
  13. 13.
    J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).Google Scholar
  14. 14.
    C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 83, 132 (1999).Google Scholar
  15. 15.
    V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64, 475 (1990).PubMedGoogle Scholar
  16. 16.
    C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 78, 4609 (1997).Google Scholar
  17. 17.
    F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).Google Scholar
  18. 18.
    S. R. White and D. J. Scalapino, Phys. Rev. B 60, 753 (1999); Phys. Rev. Lett. 80, 1272 (1998); 81, 3227 (1998).Google Scholar
  19. 19.
    S. R. White and D. J. Scalapino, Phys. Rev. Lett. 84, 3021 (2000). C. S. Hellberg and E. Manousakis, Phys. Rev. Lett. 84, 3022 (2000).Google Scholar
  20. 20.
    H. O. Jacobs, H. F. Knapp, and A. Stemmer, Rev. Sci. Instrum. 70, 1756 (1999).Google Scholar
  21. 21.
    H. A. Mook, Pengcheng Dal, F. Dogan, and R. D. Hunt, Nature 404, 729 (2000).Google Scholar
  22. 22.
    F. R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995).Google Scholar
  23. 23.
    L. P. Kouwenhoven et al., Phys. Rev. Lett. 65, 361 (1990).Google Scholar
  24. 24.
    C. A. Stafford and S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994).Google Scholar
  25. 25.
    R. J. Haug, J. M. Hong, and K. Y. Lee, Surf. Sci. 263, 415 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • E. Manousakis
    • 1
  1. 1.Department of Physics and Center for Materials Research and TechnologyFlorida State UniversityTallahassee

Personalised recommendations