Geometriae Dedicata

, Volume 89, Issue 1, pp 107–131

Mapping Class Groups of Nonorientable Surfaces

  • Mustafa Korkmaz
Article

Abstract

We obtain a finite set of generators for the mapping class group of a nonorientable surface with punctures. We then compute the first homology group of the mapping class group and certain subgroups of it. As an application we prove that the image of a homomorphism from the mapping class group of a nonorientable surface of genus at least nine to the group of real-analytic diffeomorphisms of the circle is either trivial or of order two.

Mapping class groups Nonorientable surfaces Real-analytic diffeomorphism of the circle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Birman, J. S.: The algebraic structure of surface mapping class groups, In: W. J. Harvey (ed.), Discrete Groups and Automorphic Functions, Academic Press, London, 1977, pp. 163-198.Google Scholar
  2. [C] Chillingworth, D. R. J.: A finite set of generators for the homeotopy group of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 65 (1969), 409-430.Google Scholar
  3. [D] Dehn, M.: Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206.Google Scholar
  4. [FS] Farb, B. and Shalen, P.: Groups of real-analytic diffeomorphisms of the circle, Ergodic Theory Dynam. Systems. to appear.Google Scholar
  5. [H] Humphries, S.: Generators for the mapping class group, In: R. Fenn (ed.), Topology of Low Dimensional Manifolds, Lecture Notes in Math. 722, Springer-Verlag, Berlin, 1979, pp. 44-47.Google Scholar
  6. [I] Ivanov, N. V.: Automorphisms of Teichmüller modular groups, In: Lecture Notes in Math. 1346, Springer-Verlag, 1988, 199-270.Google Scholar
  7. [J] Johnson, D. L.: Homeomorphisms of a surface which act trivially on homology, Proc. Amer.Math.Soc. 75 (1979), 119-125.Google Scholar
  8. [K] Korkmaz, M.: First homology group of mapping class groups of nonorientable surfaces, Math.Proc.Cambridge Philos. Soc. 123 (1998), 487-499.Google Scholar
  9. [KM] Korkmaz, M. and McCarthy, J. D.: Surface mapping class groups are ultrahopfian, Math. Proc.Cambridge Philos. Soc. 129 (2000), 35-53.Google Scholar
  10. [L1] Lickorish, W. B. R.: Homeomorphisms of non-orientable two-manifolds, Math.Proc. Cambridge Philos.Soc. 59 (1963), 307-317.Google Scholar
  11. [L2] Lickorish, W. B. R.: On the homeomorphisms of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 61 (1965), 61-64.Google Scholar
  12. [MP] McCarthy, J. D. and Pinkall, U.: Representing homology automorphisms of nonorientable surfaces, Preprint, Max-Planck Inst., 1985.Google Scholar
  13. [MK] Melvin, P. and Kazez, W.: 3-dimensional bordism, Michigan Math. J. 36 (1989), 251-260.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Mustafa Korkmaz
    • 1
  1. 1.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations