Pharmaceutical Research

, Volume 19, Issue 2, pp 147–153

Comparative Inhibitory Effects of Different Compounds on Rat Oatp1 (Slc21a1)- and Oatp2 (Slc21a5)-Mediated Transport

  • Yoshihisa Shitara
  • Daisuke Sugiyama
  • Hiroyuki Kusuhara
  • Yukio Kato
  • Takaaki Abe
  • Peter J. Meier
  • Tomoo Itoh
  • Yuichi Sugiyama
Article

Abstract

Purpose. The purpose of the present study is to examine the selectivity of various inhibitors towards the rat organic anion transporting polypeptides 1 (Oatp1: gene symbol Slc21a1) and 2 (Oatp2: Slc21a5).

Methods. The inhibitory effects of 20 compounds on the Oatp1-mediated transport of estradiol 17β-D-glucuronide and on the Oatp2-mediated transport of digoxin were examined in cDNA-transfected LLC-PK1 cells.

Results. Among the compounds examined in this study, nonsteroidal anti-inflammatory drugs, deoxycorticosterone, and quinidine preferentially inhibited Oatp1, whereas digoxin, quinine, and rifampicin preferentially inhibited Oatp2 at low concentrations. On the other hand, propionic acid, α-ketoglutarate and p-aminohippurate showed no inhibitory effects on either transporter up to a concentration of 1000 μM. The Ki values of ibuprofen and quinidine were estimated to be 19 and 13 times lower for Oatp1 compared with Oatp2, whereas the values for rifampicin, quinine, and digoxin were 13, 20, and 100< times lower for Oatp2 compared with Oatp1.

Conclusions. At low concentrations, some of the tested inhibitors exert selective inhibition of either Oatp1- or Oatp2-mediated substrate transport. These selective inhibitors may be used at appropriate concentrations to estimate the maximum contribution of Oatp1 or Oatp2 to the total substrate uptake into rat hepatocytes.

Oatp organic anion transporter hepatic transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Yamazaki, H. Suzuki, and Y. Sugiyama. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm. Res. 13:497–513 (1996).Google Scholar
  2. 2.
    O. Takenaka, T. Hori, H. Suzuki, and Y. Sugiyama. Carrier-mediated active transport of the glucuronide and sulfate of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) into rat liver: quantitative comparison of permeability in isolated hepatocytes, perfused liver and liver in vivo. J. Pharmacol. Exp. Ther. 280:948–958 (1996).Google Scholar
  3. 3.
    M. Ishigami, T. Tokui, T. Komai, K. Tsukahara, M. Yamazaki, and Y. Sugiyama. Evaluation of the uptake of pravastatin by perfused rat liver and primary cultured rat hepatocytes. Pharm. Res. 12:1741–1745 (1995).Google Scholar
  4. 4.
    E. Jacquemin, B. Hagenbuch, B. Stieger, A. W. Wolkoff, and P. J. Meier. Expression cloning of a rat liver Na+-independent organic anion transporter. Proc. Natl. Acad. Sci. USA 91:133–137 (1994).Google Scholar
  5. 5.
    B. Noé, B. Hagenbuch, B. Stieger, and P. J. Meier. Isolation of multispecific organic anion and cardiac glycoside transporter from rat brain. Proc. Natl. Acad. Sci. USA 94:10346–10350 (1997).Google Scholar
  6. 6.
    V. Cattori, B. Hagenbuch, N. Hagenbuch, B. Stieger, R. Ha, K. E. Winterhalter, and P. J. Meier. Identification of organic anion transporting polypeptide 4 (Oatp4) as a major full-length isoform of the liver-specific transporter-1 (rlst-1) in rat liver. FEBS Lett 474:242–245 (2000).Google Scholar
  7. 7.
    M. Kakyo, M. Unno, T. Tokui, R. Nakagomi, T. Nishio, H. Iwasaki, D. Nakai, M. Sei, M. Suzuki, T. Naitoh, S. Matsuno, H. Yawo, and T. Abe. Molecular characterization and functional regulation of a novel rat liver-specific organic anion transporter rlst-1. Gastroenterology 117:770–775 (1999).Google Scholar
  8. 8.
    T. Sekine, S. H. Cha, M. Tsuda, N. Apiwattanakul, N. Nakajima, Y. Kanai, and H. Endou. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 429:179–182 (1998).Google Scholar
  9. 9.
    H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of a new multiple organic anion transporter from rat brain. J. Biol. Chem. 274:13675–13680 (1999).Google Scholar
  10. 10.
    H. Ishizuka, K. Konno, H. Naganuma, K. Nishimura, H. Kouzuki, H. Suzuki, B. Stieger, P. J. Meier, and Y. Sugiyama. Transport of temocaprilat into rat hepatocytes: role of organic anion transporting polypeptides. J. Pharmacol. Exp. Ther. 287:37–42 (1998).Google Scholar
  11. 11.
    B. Hsiang, Y. Zhu, Z. Wang, Y. Wu, V. Sasseville, W-P Yang, and T. G. Kirchgessner. A novel human hepatic organic anion transporting polypeptide (OATP2). J. Biol. Chem. 274:37161–37168 (1999).Google Scholar
  12. 12.
    N. Kanai, R. Lu, A. W. Wolkoff, and V. L. Schuster. Transient expression of oatp organic anion transporter in mammalian cells: identification of candidate substrates. Am. J. Physiol. 270:F319–F325 (1996).Google Scholar
  13. 13.
    U. Eckhardt, A. Schroeder, B. Stieger, M. Höchli, L. Landmann, R. Tynes, P. J. Meier, and B. Hagenbuch. Polyspecific substrate uptake by the hepatic organic anion transporter Oatp1 in stably transfected CHO cells. Am. J. Physiol. 276:G1037–G1042 (1999).Google Scholar
  14. 14.
    N. Kanai, R. Lu, Y. Bao, A. W. Wolkoff, M. Vore, and V. L. Schuster. Estradiol 17?-D-glucuronide is a high-affinity substrate for oatp organic anion transporter. Am. J. Physiol. 270:F326–F331 (1996).Google Scholar
  15. 15.
    J. E. van Montfoort, B. Hagenbuch, K. E. Fattinger, M. Müller, G. M. M. Groothuis, D. K. F. Meijer, and P. J. Meier. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J. Pharmacol. Exp. Ther. 291:147–152 (1999).Google Scholar
  16. 16.
    T. Abe, M. Kakyo, H. Sakagami, T. Tokui, T. Nishio, M. Tanemoto, H. Nomura, S. C. Hebert, S. Matsuno, H. Kondo, and H. Yawo. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J. Biol. Chem. 273:22395–22401 (1998).Google Scholar
  17. 17.
    C. Reichel, J. E. van Montfort, V. Cattori, C. Rahner, B. Stieger, T. Kamisako, and P. J. Meier. Localization and function of the organic anion-transporting polypeptide oatp2 in rat liver. Gastroenterology 117:688–695 (1999).Google Scholar
  18. 18.
    L. Li, P. J. Meier, and N. Ballatori. Oatp2 mediated bidirectional organic solute transport: a role for intracellular glutathione. Mol. Phamacol. 58:335–340 (2000).Google Scholar
  19. 19.
    R. J. Bertz and G. R. Granneman. Use of in vitro and in vivo data to estimation the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet. 32:210–258 (1997).Google Scholar
  20. 20.
    H. Kouzuki, H. Suzuki, K. Ito, R. Ohashi, and Y. Sugiyama. Contribution of organic anion transporting polypeptide to uptake of its possible substrates into rat hepatocytes. J. Pharmacol. Exp. Ther. 288:627–634 (1999).Google Scholar
  21. 21.
    H. Niwa, K. Yamamura, and J. Miyazaki. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–200 (1991).Google Scholar
  22. 22.
    A. Schroeder, U. Eckhardt, B. Stieger, R. Tynes, C. D. Schteingart, A. F. Hofmann, P. J. Meier, and B. Hagenbuch. Substrate specificity of the rat liver Na+-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am. J. Physiol. 274:G370–G375 (1998).Google Scholar
  23. 23.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).Google Scholar
  24. 24.
    K. Yamaoka, Y. Tanigawara, Y. Nakagami, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn. 4:879–885 (1981).Google Scholar
  25. 25.
    H. Kouzuki, H. Suzuki, and Y. Sugiyama. Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm. Res. 17:432–438 (2000).Google Scholar
  26. 26.
    H. Kouzuki, H. Suzuki, B. Stieger, P. J. Meier, and Y. Sugiyama. Characterization of the transport properties of organic anion transporting polypeptide 1 (oatp1) and Na+/taurocholate cotransporting polypeptide (Ntcp): comparative studies on the inhibitory effect of their possible substrates in hepatocytes and cDNA-transfected COS-7 cells. J. Pharmacol. Exp. Ther. 292:505–511 (2000).Google Scholar
  27. 27.
    K. Fattinger, V. Cattori, B. Hagenbuch, P. J. Meier, and B. Stieger. Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 32:82–86 (2000).Google Scholar
  28. 28.
    A. Hedman and D. K. F. Meijer. Stereoselective inhibition by the diastereomers quinidine and quinine of uptake of cardiac glycosides into isolated rat hepatocytes. J. Pharm. Sci. 87:457–461 (1997).Google Scholar
  29. 29.
    B. Hagenbuch, B. F. Scharschmidt, and P. J. Meier. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochem. J. 316:901–904 (1996).Google Scholar
  30. 30.
    H. Kouzuki, H. Suzuki, K. Ito, R. Ohashi, and Y. Sugiyama. Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes. J. Pharmacol. Exp. Ther. 286:1043–1050 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Yoshihisa Shitara
    • 1
  • Daisuke Sugiyama
    • 2
  • Hiroyuki Kusuhara
    • 2
    • 3
  • Yukio Kato
    • 2
    • 3
  • Takaaki Abe
    • 4
  • Peter J. Meier
    • 5
  • Tomoo Itoh
    • 1
  • Yuichi Sugiyama
    • 2
    • 3
  1. 1.School of Pharmaceutical SciencesKitasato UniversityMinato-ku, TokyoJapan
  2. 2.Graduate School of Pharmaceutical SciencesThe University of TokyoHongo, Bunkyo-ku, TokyoJapan
  3. 3.CREST, Japan Science and Technology CorporationJapan
  4. 4.Department of NeurophysiologyTohoku University School of MedicineAoba-ku, SendaiJapan
  5. 5.Division of Clinical Pharmacology and Toxicology, Department of MedicineUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations