Geometriae Dedicata

, Volume 89, Issue 1, pp 155–175 | Cite as

Rigidity of Branch Groups Acting on Rooted Trees

  • Yaroslav Lavreniuk
  • Volodymyr Nekrashevych
Article

Abstract

Automorphisms of groups acting faithfully on rooted trees are studied. We find conditions under which every automorphism of such a group is induced by a conjugation from the full automorphism group of the rooted tree. These results are applied to known examples such as Grigorchuk groups, Gupta–Sidki group, etc.

rooted trees group automorphisms automorphisms of rooted trees automata branch groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serre, J.-P.: Trees, Springer-Verlag, New York, 1980.Google Scholar
  2. 2.
    Tits, J.: Sur le groupe des automorphismes d'un arbre, In: A. Hae£iger and R. Narasimhan (eds), Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham). Springer, New York, 1970, pp. 188-211.Google Scholar
  3. 3.
    Bass, H., Otero-Espinar, M. et al.: Cyclic Renormalization and the Automorphism Groups of Rooted Trees, Lecture Notes in Math. 1621, Springer, Berlin, 1995.Google Scholar
  4. 4.
    Grigorchuk, R.: On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen. 14(1) (1980), 53-54. English translation: Functional Anal. Appl. 14 (1980), 41-43.Google Scholar
  5. 5.
    Gupta, N. and Sidki, S.: On the Burnside problem for periodic groups, Math. Z. 182 (1983), 385-388.Google Scholar
  6. 6.
    Grigorchuk, R.: Degrees of growth of finitely generated groups and the theory of finitely generated groups, Izv. Akad. Nauk SSSR Ser. Mat. 48(5) (1984), 939-985. English translation: Math. USSR-Izv. 25(2) (1985), 259-300.Google Scholar
  7. 7.
    Grigorchuk, R.: Just infinite branch groups, In: M. P. F. du Sautoi, A. Shalev and D. Segal (eds): New Horizons in Pro-p Groups, Progress in Mathematics. 184, Birkhäuser, Basel, 2000, pp. 121-179.Google Scholar
  8. 8.
    Bartholdi, L. and Grigorchuk, R.: On parabolic subgroups and Hecke algebras of some fractal groups, Forschungsinstitut für Mathematik, ETH Zürich. (preprint, 1999).Google Scholar
  9. 9.
    Sidki, S.: On a 2-generated infinite 3-group: subgroups and automorphisms, J. Algebra 110(1) (1987), 24-55.Google Scholar
  10. 10.
    Brunner, A. M. and Sidki, S.: The generation of GL(n, Z) by finite state automata, Internat. J. Algebra Comput. 8(1) (1998), 127-139.Google Scholar
  11. 11.
    Nekrashevych, V. and Sushchansky, V.: On Confinal Dynamics of Rooted Tree Automorphisms, In: CGAMA Conference Proc. London Math. Soc. Lecture Notes Ser. 275. Cambridge Univ. Press, 2000, pp. 229-246.Google Scholar
  12. 12.
    Znoiko, D. V.: The automorphism groups of regular trees, Mat. Sb. (N.S.) 32 (1977), 109-115. (in Russian).Google Scholar
  13. 13.
    Lubotzky, A., Mozes, S. and Zimmer, R. J.: Superrigidity for the commensurability group of tree lattices, Comment. Math. Helv. 69 (1994), 523-548.Google Scholar
  14. 14.
    Bass, H. and Lubotzky, A.: Rigidity of group actions on locally finite trees, Proc. London Math. Soc. (3) 69 (1994) 541-575.Google Scholar
  15. 15.
    Leonov, Yu.: On laws in tree automorphism groups, Visnyk Kyivskogo Universytetu (3), 37-44 (1998). (in Ukrainian).Google Scholar
  16. 16.
    Nekrashevych, V. and Sidki, S.: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms, Proc. Conf. on Group Theory, Bielefeld, 1999, to appear.Google Scholar
  17. 17.
    Lavreniuk, Ya.: Automorphisms of wreath branch groups, Visnyk Kyivskogo Universytetu (1) (1999), 50-57. (in Ukrainian).Google Scholar
  18. 18.
    Neumann, P.M.: On the structure of standard wreath products of groups, Math. Zeitschr. 84 (1964), 343-373.Google Scholar
  19. 19.
    Houghton, C. H.: On the automorphisms of certain wreath products, Publ. Math. Debrecen 9 (1962), 307-315.Google Scholar
  20. 20.
    Bodnarchuk, Y. V.: Structure of automorphism group of a non-standard wreath product of groups, Ukrainian Math. J. 36(2) (1984), 143-148 (in Russian).Google Scholar
  21. 21.
    Bodnarchuk, Y. V.: Automorphisms of iterated wreath products of Abelian p-groups, Ukrainian Math. J. 43(7-8) (1991), 889-894 (in Russian).Google Scholar
  22. 22.
    Sushchansky, V.: Universal by embedding profinite groups of a countable weight, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) (1989), 113-120. (in Russian).Google Scholar
  23. 23.
    Brunner, A. M. and Sidki, S.: On the automorphism group of the one-rooted binary tree, J. Algebra 195 (1997), 465-486.Google Scholar
  24. 24.
    Brunner, A.M., Sidki, S. and Vieira, A. C.: A just non-solveable torsion free group defined on the binary tree, J. Algebra 211 (1999), 99-144.Google Scholar
  25. 25.
    Sidki, S.: Regular Trees and their Automorphisms, Monogr. de Mata. 56, IMPA, Rio de Janeiro, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Yaroslav Lavreniuk
    • 1
  • Volodymyr Nekrashevych
    • 1
  1. 1.Faculty of Mechanics and MathematicsKyiv Taras Shevchenko UniversityKyivUkraine

Personalised recommendations