, Volume 52, Issue 3, pp 487–502 | Cite as

Collaboration and Cognitive Structures in Social Science Research Fields. Towards Socio-Cognitive Analysis in Information Systems

  • Peter Mutschke
  • Anabel Quan Haase


Bibliographic information systems have to address the needs of users by providing “value-added-components.” For instance, users would benefit from knowing the social and cognitive structures of research fields. Research suggests that a relationship exists between actors' position in scientific networks and the innovativeness of themes they examine. The present study confirms and expands these results through a technique that relates the cognitive and social structures of a research field (socio-cognitive analysis). The results from two social science fields suggest that well-integrated actors are engaged in the consolidation of the mainstream, whereas new ideas are most likely to be introduced and pursued by social climbers, i.e., actors who are starting to form a social network of collaboration.


Research Field Cluster Centrality Social Network Analysis Cognitive Structure Free Rider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1._ P. Mutschke, Processing scientific networks in bibliographic databases, In: H. H. Bock et al. (Eds), Information Systems and Data Analysis, Proceedings of the 17th Annual Conference of the GfKl 1993, Springer Verlag, 1994, pp. 126-132.Google Scholar
  2. 2.
    K. M. Carley, N. P. Hummon, M. Harty, Scientific influence: An analysis of the main path structure in the Journal of Conflict Resolution,Knowledge: Creation, Diffusion, Utilization, 14 (1993) 417-447.Google Scholar
  3. 3.
    K. M. Carley, Structural constraints on communication: The diffusion of the homomorphic signal analysis technique through scientific fields, Journal of Mathematical Sociology, 15 (1990) 207-246.CrossRefGoogle Scholar
  4. 4.
    J. Scott, Social Network Analysis: A Handbook, Sage Publications, London, UK, 1991.Google Scholar
  5. 5.
    S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, NY, 1994.Google Scholar
  6. 6.
    B. Wellman, Network analysis: Some basic principles, In: R. Collins (Ed.), Sociological Theory, Jossey-Bass, (1983), pp. 155-200.Google Scholar
  7. 7.
    L. Freeman, Centrality in social networks: Conceptual clarification, Social Networks, 1 (1979) 215-239.CrossRefGoogle Scholar
  8. 8.
    D. Crane, Invisible Colleges: Diffusion of Knowledge in Scientific Communities, University of Chicago Press, Chicago, 1972.Google Scholar
  9. 9.
    D. Crane, Social structure of a group of scientists: A test of the 'Invisible College' hypothesis, American Sociological Review, 34 (1969) 335-352.CrossRefGoogle Scholar
  10. 10.
    J. S. Coleman, E. Katz, H. Menzel, Medical Innovation: A Diffusion Study, Bobbs Merrill, New York, 1966.Google Scholar
  11. 11.
    E. Katz, The two-step flow of communication: An up-to-date report on a hypothesis, Public Opinion Quarterly, 21 (1957) 61-78.CrossRefGoogle Scholar
  12. 12.
    E. M. Rogers, F. F. Shoemaker, Communication of Innovations: A Cross-Cultural Approach, Free Press, New York, 1971.Google Scholar
  13. 13.
    M. Callon, J. P. Courtial, F. Laville, Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry, Scientometrics, 22 (1991) 155-205.CrossRefGoogle Scholar
  14. 14.
    M. Callon, J. P. Courtial, W. A. Turner, S. Bauin, From translations to problematic networks: An introduction to co-word analysis, Social Science Information, 22 (1983) 191-235.Google Scholar
  15. 15.
    M. Hesse, Revolutions and Reconstructions in the Philosophy of Science, Harvester Press, London, 1980.Google Scholar
  16. 16.
    P. Mutschke, I. Renner, Akteure und Themen im Gewaltdiskurs: Eine Strukturanalyse der Forschungslandschaft, In: E. Mochmann, U. Gerhardt (Eds), Gewalt in Deutschland: Soziale Befunde und Deutungslinien, Oldenburg Verlag, 1995, pp. 147-192.Google Scholar
  17. 17.
    L. Leydesdorff, Why words and co-words cannot map the development of the sciences, Journal of the American Society of Information Science, 48 (1997) 418-427.CrossRefGoogle Scholar
  18. 18.
    B. Heintz, Wissenschaft im Kontext: Neuere Entwicklungen in der Wissenschaftssoziologie, Kölner Zeitschrift für Soziologie und Sozialpsychologie, 45 (1993) 528-552.Google Scholar
  19. 19.
    I. Renner, Gewalt in der Gesellschaft: Zur sozialwissenschaftlichen Konstruktion des Phänomens, Informationszentrum Sozialwissenschaften, Jahresbericht, Bonn., 1995.Google Scholar
  20. 20.
    L. Grivel, P. Mutschke, X. Polanco, Thematic mapping on bibliographic databases by cluster analysis: A description of the SDOC environment with SOLIS, Knowledge Organisation, 22 (1995) 70-77.Google Scholar
  21. 21.
    I. Renner, Soziale Kohärenz und Innovatität: Struktureffekte zur Akzpetanz neuer Themen in sozialwissenschaftlichen Forschungsfeldern, Kölner Zeitschrift für Soziologie und Sozialpsychologie, 49 (1997) 74-97.Google Scholar
  22. 22.
    J. S. Coleman, Foundations of Social Theory, Harvard University Press, Cambridge, MA, 1990.Google Scholar
  23. 23.
    E. M. Rogers, Network analysis of the diffusion of innovations, In: D. Lerner et al. (Eds), Communication Research — a Half Century Appraisal, East West Center, 1977, pp. 137-164.Google Scholar
  24. 24.
    T. W. Valente, Network Models of the Diffusion of Innovations, Hampton Press, Inc., Cresskill, 1995.Google Scholar
  25. 25.
    H. Menzel, Innovation, integration, and marginality: A survey of physicians, American Sociological Review, 25 (1960) 704-713.CrossRefGoogle Scholar
  26. 26.
    B. Krause, P. Metzler, Angewandte Statistik, VEB Deutscher Verlag der Wissenschaften, Berlin, 1988.Google Scholar
  27. 27.
    K. M. Van Meter; W. A. Turner, Cognitive mapping: The German FORIS database and Sociological Abstracts' AIDS research. In: H. Best et al. (Eds), Informations-und Wissensverarbeitung in den Sozialwissenschaften. Westdeutscher Verlag, Opladen, 1994, pp. 257-274.Google Scholar
  28. 28.
    L. Leydesdorff, A validation study of “Leximappe”, Scientometrics, 25 (1992) 295-312.CrossRefGoogle Scholar
  29. 29.
    B. Everett, Cluster Analysis, Social Science Research Council, Heinemann, London, etc., 1974.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

Authors and Affiliations

  • Peter Mutschke
    • 1
  • Anabel Quan Haase
    • 2
  1. 1.Social Science Information CentreBonnGermany
  2. 2.Faculty of Information ScienceUniversity of TorontoCanada

Personalised recommendations