Climatic Change

, Volume 52, Issue 4, pp 453–479

The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials

  • W. J. Collins
  • R. G. Derwent
  • C. E. Johnson
  • D. S. Stevenson
Article

Abstract

Oxidation by hydroxyl radicals is the main removal process for organic compounds in the troposphere. This oxidation acts as a source of ozone and as a removal process for hydroxyl and peroxy radicals, thereby reducing the efficiency of methane oxidation and promoting the build-up of methane. Emissions of organic compounds may therefore lead to the build-up of two important radiatively-active trace gases: methane and ozone. Emission pulses of 10 organic compounds were followed in a global 3-D Lagrangian chemistry-transport model to quantify their indirect greenhouse gas impacts through changes induced in the tropospheric distributions of methane and ozone. The main factors influencing the global warming potentials of the 10 organic compounds were found to be their spatial emission patterns, chemical reactivity and transport, molecular complexity and oxidation products formed. The indirect radiative forcing impacts of organic compounds may be large enough that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R.: 2000, ‘Atmospheric Chemistry VOCs and NOx’, Atmos. Eviron. 34, 2063–2101.Google Scholar
  2. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: 1996, ‘Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry’, Atmos. Environ. 30, 3903–3904.Google Scholar
  3. Berntsen, T. K., Isaksen, I. S. A., Myhre, G., Fuglestvedt, J. S., Stordal, F., Larsen, T. A., Freckleton, R. S., and Shine, K. P.: 1997: ‘Effects of Anthropogenic Emissions on Tropospheric Ozone and Its Radiative Forcing’, J. Geophys. Res. 102, 28101–28126.Google Scholar
  4. Collins, W. J., Derwent, R. G., Johnson, C. E., and Stevenson, D. S.: 2000, ‘The Impact of Human Activities on the Photochemical Production and Destruction of Tropospheric Ozone’, Quart. J. Roy. Meteorol. Soc. 126, 1925–1951.Google Scholar
  5. Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G.: 1997, ‘Tropospheric Ozone in a Global-Scale Three-Dimensional Lagrangian Model and Its Response to NOx Emissions Controls’, J. Atmos. Chem. 26, 223–274.Google Scholar
  6. Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G.: 1999, ‘The Role of Convection in Determining the Budget of Odd Hydrogen in the Upper Troposphere’, J. Geophys. Res. 104, 26927–26941.Google Scholar
  7. Cooke, W. F. and Wilson, J. J. N.: 1996, ‘A Global Black Carbon Aerosol Model’, J. Geophys. Res. 101, 19395–19409.Google Scholar
  8. Crutzen, P. J.: 1974, ‘Photochemical Reactions Initiated by and Influencing Ozone in the Unpolluted Troposphere’, Tellus 26, 47–57.Google Scholar
  9. Cullen, M. J. P.: 1993: ‘The Unified Forecast/Climate Model’, Met. Mag. 122, 81–94.Google Scholar
  10. Daniel, J. S. and Solomon, S.: 1998, ‘On the Climate Forcing of Carbon Monoxide’, J. Geophys. Res. 103, 13249–13260.Google Scholar
  11. Demerjian, K. L., Kerr, J. A., and Calvert, J. G.: 1974, ‘Mechanism of Photochemical Smog Formation’, Adv. Environ. Sci. Technol. 4, 1–262.Google Scholar
  12. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: 1997, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12, JPL Publ. 97-4, Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  13. Derwent, R. G.: 1990, Trace Gases and their Relative Contribution to the Greenhouse Effect, AERE Report R-13716, H. M. Stationery Office, London.Google Scholar
  14. Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S.: 2001, ‘Transient Behaviour of Tropospheric Ozone Precursors in a Global 3-D CTM and their Indirect Greenhouse Effects’, Clim. Change 49, 463–487.Google Scholar
  15. Edwards, J. M. and Slingo, A.: 1996, ‘Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model, Quart. J. Roy. Meteorol. Soc. 122, 689–719.Google Scholar
  16. Ehhalt, D. H.: 1974, ‘The Atmospheric Cycle of Methane’, Tellus 26, 58–70.Google Scholar
  17. Fuglestvedt, J. S., Berntsen, T., Isaksen, I. S. A., Mao, H., Liang, X. Z., and Wang, W. C.: 1999, ‘Climatic Forcing of Nitrogen Oxides through Changes in Tropospheric Ozone and Methane; Global 3-D Model Studies’, Atmos. Environ. 33, 961–977.Google Scholar
  18. Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: 1995, ‘A Global Model of Natural Volatile Organic Compound Emissions’, J. Geophys. Res. 100, 8873–8892.Google Scholar
  19. Haywood, J. M., Schwarzkopf, M. D., and Ramaswamy, V.: 1998, ‘Estimates of Radiative Forcing Due to Modeled Increases in Tropospheric Ozone’, J. Geophys. Res. 103, 16999–17007.Google Scholar
  20. Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, ‘GlobalWarming in the Twenty-First Century: An Alternative Scenario’, Proc. Nat. Acad. Sci. 97, 9875–9880.Google Scholar
  21. Hough, A. M.: 1988, The Calculation of Photolysis Rates for Use in Global Tropospheric Modelling Studies, UKAEA Harwell Report AERE R 13259, Oxfordshire.Google Scholar
  22. IPCC: 1995, Radiative Forcing of Climate Change, The 1994 Report of the Scientific Assessment Working Group of the IPCC,WMO UNEP, Geneva.Google Scholar
  23. IPCC: 1996, Climate Change 1995: The IPCC Scientific Assessment, Cambridge University Press, Cambridge.Google Scholar
  24. Isaksen, I. S. A. and Hov, O.: 1987, ‘Calculation of Trends in the Tropospheric Concentration of O3, OH, CO, CH4 and NOx’, Tellus B 33, 271–285.Google Scholar
  25. Johnson, C. E. and Derwent, R. G.: 1996, ‘Relative Radiative Forcing Consequences of Global Emissions of Hydrocarbons, Carbon Monoxide and NOx from Human Activities Estimated with a Zonally-Averaged Two-Dimensional Model’, Clim. Change 34, 439–462.Google Scholar
  26. Kanakidou, M., Dentener, F. J., Brasseur, G. P., Collins, W. J., Berntsen, T. K., Hauglustaine, D. A., Houweling, S., Isaksen, I. S. A., Krol, M., Law, K. S., Lawrence, M. G., Muller, J. F., Plantevin, P. H., Poisson, N., Roelofs, G. J., Wang, Y., and Wauben, W. M. F.: 1998, 3-D Global Simulations of Tropospheric Chemistry with Focus on Ozone Distributions, EUR 18842 Report, European Commission, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  27. Kanikadou, M., Dentener, F. J., Brasseur, G. P., Berntsen, T. K., Collins, W. J., Hauglustaine, D. A., Houweling, S., Isaksen, I. S. A., Krol, M., Lawrence, M. G., Muller, J. F., Poisson, N., Roelofs, G. J., Wang, Y., and Wauben, W. M. F.: 1999, ‘3-D Global Simulations of Tropospheric CO Distributions – Results of the GIM/IGAC Intercomparison 1997 Exercise’, Chemosphere: Global Change Sci. 1, 263–282.Google Scholar
  28. Kheshgi, H. S., Jain, A. K., Kotamarthi, R., and Wuebbles, D. J.: 1999: ‘Future Atmospheric Methane Concentrations in the Context of the Stabilisation of Greenhouse Gas Concentrations’, J. Geophys. Res. 104, 19183–19190.Google Scholar
  29. Kiehl, J. T., Schneider, T. L., Portmann, R. W., and Solomon, S.: 1999, ‘Climate Forcing Due to Tropospheric and Stratospheric Ozone’, J. Geophys. Res. 104, 31239–31254.Google Scholar
  30. Lacis, A. A., Wuebbles, D. J., and Logan, J. A.: 1990, ‘Radiative Forcing of Climate by Changes in the Vertical Distribution of Ozone’, J. Geophys. Res. 95, 9971–9981.Google Scholar
  31. Leighton, P. A.: 1961, Photochemistry of Air Pollution, Academic Press, New York.Google Scholar
  32. Levy, H.: 1971, ‘Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted’, Science 173, 141–143.Google Scholar
  33. Murphy, D. M. and Fahey, D. W.: 1994, ‘An Estimate of the Flux of Stratospheric Reactive Nitrogen and Ozone into the Troposphere’, J. Geophys. Res. 99, 5325–5332.Google Scholar
  34. Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J., and Haverlag, J. L.: 1996, Description of EDGAR Version 2.0, RIVM Report Nr. 771060 002, Bilthoven.Google Scholar
  35. Olson, J., Prather, M., Berntsen, T., Carmichael, G., Chatfield, R., Connell, P., Derwent, R., Horowitz, L., Jin, S., Kanakidou, M., Kasibhatla, P., Kotamarthi, R., Kuhn, M., Law, K., Penner, J., Perliski, L., Sillman, S., Stordal, F., and Thompson, A., and Wild, O.: 1997, ‘Results from the Intergovernental Panel on Climatic Change Photochemical Model Intercomparison (Photocomp)’, J. Geophys. Res. 102, 5979–5991.Google Scholar
  36. Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., Walton, J. J., and Hameed, S.: 1991, ‘Tropospheric Nitrogen: A Three-Dimensional Study of Sources, Distributions and Deposition’, J. Geophys. Res. 96, 959–990.Google Scholar
  37. Prather, M. J.: 1994, ‘Lifetimes and Eigenstates in Atmospheric Chemistry’, Geophys. Res. Lett. 21, 801–804.Google Scholar
  38. Prather, M. J.: 1996, ‘Natural Modes and Time Scales in Atmospheric Chemistry: Theory, GWPs for CH4 and CO, and Runaway Growth’, Geophys. Res. Lett. 23, 2597–2600.Google Scholar
  39. Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn,W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M.: 1987, ‘Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases’, Rev. Geophys. 25, 1441–1482.Google Scholar
  40. Rasch, P. J., Feichter, J., Law, K., Mahowald, N., Penner, J., Benkowitz, C., Genthon, C., Giannakopoulos, C., Kasibhatla, P., Koch, D., Levy, H., Maki, T., Prather, M., Roberts, D. L., Roelofs, G.-J., Stevenson, D., Stockwell, Z., Taguchi, S., Kritz, M., Chipperfield, M., Baldocchi, D., McMurray, P., Barrie, L., Balkanski, Y., Chatfield, R., Kjellstrom, E., Lawrence, M., Lee, H. N., Lelieveld, J., Noone, K. J., Seinfeld, J., Stenchikov. G., Schwartz, S., Walcek, C., and Williamson, D.: 2000, ‘A Comparison of Scavenging and Deposition Processes in Global Models: Results from the WCRP Cambridge Workshop of 1995’, Tellus 52B, 1025–1056.Google Scholar
  41. Stevenson, D. S., Collins, W. J., Johnson, C. E., and Derwent, R. G.: 1998, ‘Intercomparison and Evaluation of Atmospheric Transport in a Lagrangian Model (STOCHEM), and an Eulerian Model (UM), Using 222Rn as a Short-Lived Tracer’, Quart. J. Roy. Meteorol. Soc. 124, 2477–2491.Google Scholar
  42. Stevenson, D. S., Johnson, C. E., Collins, W. J., Derwent, R. G., Shine, K. P., and Edwards, J. M.: 1998, ‘Evolution of Tropospheric Ozone Radiative Forcing’, Geophys. Res. Lett. 25, 3819–3822.Google Scholar
  43. Walton, J., MacCracken, M., and Ghan, S.: 1988, ‘A Global-Scale Lagrangian Trace Species Model of Transport, Transformation, and Removal Processes’, J. Geophys. Res. 93, 8339–8354.Google Scholar
  44. Wild, O. and Prather, M. J.: 2000, ‘Excitation of the Primary Tropospheric Chemical Mode in a Global Three-Dimensional Model’, J. Geophys. Res. 105, 24647–24660. (Received 19 December 2000; in revised form 6 July 2001)Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • W. J. Collins
    • 1
  • R. G. Derwent
    • 1
  • C. E. Johnson
    • 2
  • D. S. Stevenson
    • 3
  1. 1.Climate Research DivisionMeteorological OfficeBracknellU.K
  2. 2.Hadley Centre for Climate Prediction and ResearchMeteorological OfficeBracknellU.K
  3. 3.Department of MeteorologyUniversity of EdinburghEdinburghU.K

Personalised recommendations