Journal of Paleolimnology

, Volume 27, Issue 2, pp 249–260

Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lakes using subfossil chironomids

  • Roberto Quinlan
  • John P. Smol


Subfossil chironomid assemblages were used to infer long-term water quality changes in south-central Ontario shield lakes, which are currently being impacted by anthropogenic eutrophication, acid rain, and recent climate change. Using a transfer function developed to infer average end-of-summer volume-weighted hypolimnetic oxygen (avg VWHO), a ‘top-bottom’ paleolimnological approach was used to reconstruct pre-industrial (pre-1850) deepwater oxygen conditions. Comparison with present-day (‘top’ surface sediments) chironomid-based inferences of avgVWHO results suggest that hypolimnetic oxygen levels are presently similar to natural, pre-industrial (‘bottom’ sediments) levels in most lakes. Approximately half of the study lakes recorded an increase in hypolimnetic oxygen since the 19th century. Inferred changes in avgVWHO correlate well with our results from another chironomid-based oxygen model which reconstructs the Anoxic Factor (AF). When study lakes are separated according to their hydrological status (i.e., natural versus managed), lakes with a dam at their outlet and seasonally managed lake levels had significantly different changes in avgVWHO compared to lakes with natural hydrology. Lakes with a dam at their outlet generally recorded increases in avgVWHO, while natural hydrology lakes mostly recorded declines. There was no relationship between inferred changes in avgVWHO and the density of cottage and resort development along the shorelines of lakes. Changes in dissolved organic carbon (DOC) possibly related to recent climate changes may also be affecting deepwater oxygen, however patterns of change are very subtle.

chironomids hypolimnetic oxygen shield lakes hydrology top-bottom approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birks, H. J. B., 1998. Numerical tools in palaeolimnology-progress, potentialities, and problems. J. Paleolim. 20: 307–332.Google Scholar
  2. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modeling of Quaternary Science Data. Technical Guide 5. Quaternary Research Association, Cambridge, UK, 161–154.Google Scholar
  3. Birks, H. J. B., J. M. Line, S. Juggins & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. R. Soc. Lond. Ser. B 327: 263–278.Google Scholar
  4. Brugam, R. B., 1988. Long-term history of eutrophication in Washington lakes. In Adams, W. J., G. A. Chapman & W. G. Landis (eds), Aquatic Toxicology and Hazard Assessment, 10th vol. American Society for Testing and Materials, Philadelphia, 63–70.Google Scholar
  5. Charlton, M. N., 1980. Hypolimnion oxygen consumption in lakes: discussion of productivity and morphometry effects. Can. J. Fish. Aquat. Sci. 37: 1531–1539.Google Scholar
  6. Clerk, S., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.Google Scholar
  7. Dillon, P. J., L. A. Molot & M. Futter, 1997. The effect of El Niñorelated drought on the recovery of acidified lakes. Environ. Monitor. Assess. 46: 105–111.Google Scholar
  8. Dillon, P. J., R. A. Reid & H. E. Evans, 1993. The relative magnitude of phosphorus sources for small, oligotrophic lakes in Ontario, Canada. Verh. Int. Verein. Limnol. 25: 355–358.Google Scholar
  9. Cumming, B. F., J. P. Smol, J. C. Kingston, D. F. Charles, H. J. B. Birks, K. E. Camburn, S. S. Dixit, A. J. Uutala & A. R. Steele, 1992. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times? Can. J. Fish. Aquat. Sci. 49: 128–141.Google Scholar
  10. Dixit, S. S., J. P. Smol, D. F. Charles, R. M. Hughes, S. G. Paulsen & G. B. Collins, 1999. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. Aquat. Sci. 56: 131–152.Google Scholar
  11. Dixit, S. S., A. S. Dixit & J. P. Smol, 1992. Assessment of changes in lake water chemistry in Sudbury area lakes since preindustrial times. Can. J. Fish. Aquat. Sci. 49: 8–16.Google Scholar
  12. Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAP-SW). Environ. Monitor. Assess. 31: 275–306.Google Scholar
  13. Francis, D. R., 2001. A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical and chironomid remains. J. Paleolim. 25: 351–365.Google Scholar
  14. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.Google Scholar
  15. Glew, J. R., 1989. A new trigger mechanism for sediment samplers. J. Paleolim. 2: 241–243.Google Scholar
  16. Glew, J. R., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. J. Paleolim. 1: 229–234.Google Scholar
  17. Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of longterm water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Can. J. Fish. Aquat. Sci. 53: 1–17.Google Scholar
  18. Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit & J. P. Smol, 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44: 739–756.Google Scholar
  19. Hofmann W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr. Palaeoclimat. Palaeoecol. 62: 501–509.Google Scholar
  20. Hutchinson, N. J., B. P. Neary & P. J. Dillon, 1993. Validation and use of Ontario's Trophic Status Model for establishing lake development guidelines. Lake Reserve. Manage. 7: 13–23.Google Scholar
  21. Juggins, S. & C. J. F. ter Braak, 1993. CALIBRATE. Unpublished computer program. Environmental Change Research Centre, University College London, London, UK.Google Scholar
  22. Kansanen, P. H., 1986. Information value of chironomid remains in the uppermost sediment layers of a complex lake basin. Hydrobiologia 143: 159–165.Google Scholar
  23. King, J. R., B. J. Shuter & A. P. Zimmerman, 1997. The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Can. J. Fish. Aquat. Sci. 54: 1873–1882.Google Scholar
  24. Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolim. 24: 43–54.Google Scholar
  25. Laird, K. R., S. C. Fritz & B. F. Cumming, 1998. A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. J. Paleolim. 19: 161–179.Google Scholar
  26. Little, J. L., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can. J. Fish. Aquat. Sci. 57: 333–341.Google Scholar
  27. Magnuson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. In Cushing, C. E. (ed.), Freshwater Ecosystems and Climate Change in North America: A Regional Assessment. John Wiley & Sons, Chichester, 7–53.Google Scholar
  28. Molot, L. A., P. J. Dillon, B. J. Clark & B. P. Neary, 1992. Predicting end-of-summer oxygen profiles in stratified lakes. Can. J. Fish. Aquat. Sci. 49: 2363–2372.Google Scholar
  29. Neary, B. P., P. J. Dillon, J. R. Munro & B. J. Clark, 1990. The acidification of Ontario lakes: an assessment of their sensitivity and current status with respect to biological damage. Ontario Ministry of the Environment, Dorset, Ontario, 147 pp.Google Scholar
  30. Nürnberg, G. K., 1995. Quantifying anoxia in lakes. Limnol. Oceanogr. 40: 1100–1111.Google Scholar
  31. Ontario Ministry of the Environment, 1984. Water Management-Goals, Policies, Objectives and Implementation Procedures of the Ministry of the Environment. Queen's Printer for Ontario, 70 pp.Google Scholar
  32. Quinlan, R. & J. P. Smol, 2000. Using fossil chironomid assemblages to determine changes in anoxia in South-central Ontario (Canada) shield lakes. Verh. Int. Verein. Limnol. 27: 1220–1225.Google Scholar
  33. Quinlan, R. & J. P. Smol. 2001a. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwat. Biol. (in press).Google Scholar
  34. Quinlan, R. & J. P. Smol. 2001b. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J. Paleolim. 26: 327–342.Google Scholar
  35. Sæther, O. A., 1980. The influence of eutrophication on deep lake benthic invertebrate communities. Prog. Water Technol. 12: 161–180.Google Scholar
  36. Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.Google Scholar
  37. Schindler, D. W., P. J. Curtis, B. R. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379: 705–708.Google Scholar
  38. Schindler, D. W., P. J. Curtis, S. E. Bayley, B. R. Parker, K. G. Beaty & M. P. Stainton, 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36: 9–28.Google Scholar
  39. Schindler, D. W., 1998. A dim future for boreal waters and landscapes. Bioscience 48: 157–164.Google Scholar
  40. Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. J. Aquat. Ecosys. Health 1: 49–58.Google Scholar
  41. Sullivan, T. J., D. F. Charles, J. P. Smol, B. F. Cumming, A. R. Selle, D. R. Thomas, J. A. Bernert & S. S. Dixit, 1990. Quantification of changes in lakewater chemistry in response to acidic deposition. Nature 345: 54–58.Google Scholar
  42. ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO for Windows version 4.0. Centre for Biometry Wageningen, CPRO-DLO, Wageningen, The Netherlands.Google Scholar
  43. Uutala, A. J., N. D. Yan, A. S. Dixit, S. S. Dixit & J. P. Smol, 1994. Paleolimnological assessment of damage to fish communities in three acidic, Canadian Shield lakes. Fish. Res. 19: 157–177.Google Scholar
  44. Walker, I. R., 1988. Late Quaternary palaeoecology of Chironomidae (Diptera: Insecta) from lake sediments in British Columbia. Ph.D. thesis, Simon Fraser University, Burnaby, B.C., Canada, 204 pp.Google Scholar
  45. Walker I. R. Midges: Chironomidae and related Diptera. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Vol. 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, (in press).Google Scholar
  46. Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region: keys and diagnoses. Part I-Larvae. Entomol. Scand. Suppl. 19: 1–457.Google Scholar
  47. Wilkinson, A. N., R. I. Hall & J. P. Smol, 1999. Chrysophyte cysts as paleolimnological indicators of environmental change due to cottage development and acidic deposition in the Muskoka-Haliburton region, Ontario, Canada. J. Paleolim. 22: 17–39.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Roberto Quinlan
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen's UniversityKingstonCanada

Personalised recommendations